שינויים

קפיצה אל: ניווט, חיפוש
/* יחס סדר מילוני */
<math>(a_1,b_1)R(a_2,b_2)\iff (a_1 < a_2) \lor (a_1 = a_2 \land b_1 \preceq b_2)</math>
 
=== תרגיל (מבוחן תשעג)===
יהא <math>A</math> קבוצה ו <math>R\subseteq A\times A</math> יחס סדר מלא עליה. נגדיר <math>O</math>
להיות קבוצת כל יחסי הסדר החלקיים על <math>A</math>, סדורה ע"י הכלה. (כלומר הזוג <math>(O,\subseteq)</math> - במילים אחרות, חושבים על <math>O</math> עם יחס הסדר החלקי "הכלה")
 
הוכח: <math>R</math> איבר מקסימלי ב <math>O</math>
 
פתרון- יהי <math>S\in O</math> יחס סדר חלקי על <math>A</math> המקיים <math>R\subseteq S</math> צ"ל <math>R=S</math>
 
נניח בשלילה כי <math>R</math> מוכל ממש ב <math>S</math>
אזי קיים <math>(a,b)\in S\land(a,b)\notin R</math>. כיוון ש <math>R</math> יחס מלא אזי מתקיים <math>(b,a)\in R</math>
כיוןן ש <math>R\subseteq S</math> נובע כי <math>(b,a)\in S</math>
מכיוון ש <math>S</math> יחס סדר חלקי (בפרט אנטי סימטרי) אזי <math>a=b</math> (כי גם (<math>a,b)\in S</math>)
אזי קיבלנו כי ּ<math>(a,a)=(a,b)\notin R</math> סתירה לכך ש <math>R</math> יחס סדר מלא ובפרט רפלקסיבי.
 
 
האם ב <math>O</math> יש מקסימום (איבר גדול ביותר)?
 
תשובה: לא. נניח שקיים איבר מקס' <math>S</math>. כיוון שגם <math>R^{-1}\in O</math> יחס אזי <math>R\cup R^{-1| \subseteq S</math>. בפרט אם <math>(a,b)\in R</math> שונים (נניח שב <math>A</math> יש 2 איברים לפחות) אזי <math>(b,a)\in R^{-1}</math> ולכן <math>(a,b),(b,a)\in S</math> בניגוד לכך ש <math>S</math> אנטי סימטרי
2,232
עריכות