שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - הרצאה/20.2.11

נוספו 273 בתים, 21:26, 9 במאי 2011
'''הערה:''' האינטגרל הוא '''לא''' שטח שמתחת לגרף. למעשה, השטח מתחת לגרף מוגדר לפי האינטגרל.
===דוגמת חישוב (ידני) של שטח שמתחת לגרף===
 נתון [[קובץ:השטח מתחת ל-x בריבוע לפי מלבנים.png|300px|ממוזער|ימין|הגרף של <math>y=x^2</math> והמלבנים החוסמים (1עם גבול ירוק) והחסומים (בצבע כחול).]]נתון הגרף של y=x<sup>2</sup>. נחשב ונרצה לחשב את השטח שמתחת לו. לצורך כך נחשב תחילה את השטח של המלבנים הגדולים והמלבנים הקטנים (החוסמים והחסומים). ברור שסכום שטחי המלבנים גדול משטח הגרף. נחלק את הקטע בקטע <math>[0,1]</math>.נחלק את הקטע:
{{left|<math>0=x_0<x_1<x_2<\dots<x_n=1</math>}}
(באופן כך שבאופן כללי <math>x_k=k/n</math> (בגרף מוצג המקרה הפרטי <math>n=4</math>).
מעל כל תת קטע קטן <math>[x_{k-1},x_k]</math> נבנה "מלבן חוסם" שגובהו <math>\left({k\over n}\right)^2=x_k^2</math>. ביחד מלבנים אלו יוצרים שטח חוסם {{left|<math>\overline S:=\sum_{k=1}^n\frac1n\left({k\over n}\right)^2=\frac1{n^3}\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6n^3}</math>}}
כמו כן, מעל כל תת קטע קטן <math>[x_{k-1},x_k]</math> נבנה "מלבן חסום" שגובהו <math>\left({k-1\over n}\right)^2=x_{k-1}^2</math> . ביחד מלבנים אלה מהווים שטח חסום {{left|<math>\underline S:=\frac1n\sum_{k=1}^n\left({k-1\over n}\right)^2=\frac1{n^3}\sum_{k=1}^n(k-1)^2=\frac1{n^3}\sum_{k=1}^{n-1}k^2=\frac{n(n+-1)n(2n+-1)}{6n^3}</math>}}
כעת אם A מציין את השטח שמתחת לגרף בוודאי ש-<math>\underline S\le A\le\overline S</math>, ז"א <math>\frac{n(n+-1)(2n+-1)}{6n^32}\le A\le\frac{n(n+1)(2n+1)}{6n^32}</math>. הדבר נכון לכל <math>n\in\mathbb N</math> ולכן נוכל להשאיף את <math>n\to\infty</math> ולקבל
<math>\frac13\le A\le\frac13</math>, לכן <math>A=\frac13</math>. {{משל}}
 
----
 
'''הגדרה:''' תהי <math>f(x)</math> מוגדרת בקטע I. נאמר שהפונקציה <math>F(x)</math> קדומה ל-f ב-I אם <math>\forall x\in I:\ F'(x)=f(x)</math>.
===הוכחה===
נגדיר <math>H(x)=F(x)-G(x)</math> ולכן <math>\forall x\in I:\ H'(x)=F'(x)-G'(x)=f(x)-f(x)=0</math>. לפי תוצאה ממשפט לגרנגלגראנג' יש קבוע c כך ש-<math>F(x)-G(x)=H(x)=c\implies F(x)=G(x)+c</math>. {{משל}}
----
'''הגדרהאינטואיטיבית:''' תהי <math>f(x)\ge0</math> רציפה בקטע <math>[a,b]</math>. נסמן ב-<math>\int\limits_a^b f</math> את השטח שמתחת לגרף.
==המשפט היסודי של חשבון אינטגרלי {{הערה|(בצורה אינטואיטיבית)}}==
===הוכחה===
<ol><li>גרף (3)[[קובץ:הוכחה אינטואיטיבית למשפט היסודי של החשבון האינפיניטסימלי. רואים ש-<math>A(a)=0</math> וננסה להוכיח ש-<math>A(b)=\int\limits_a^b f</math>.png|ימין|ממוזער|350px]]# יהי x נתון. כעת לפי ההגדרה <math>A'(x)=\lim_{\Delta x\to0}\frac{A(x+\Delta x)-A(x)}{\Delta x}</math>. בציורבגרף: <math>=A(x+\Delta x)-A(x)</math> = שטח הארובההשטח של החלק הירוק, <math>=\Delta x</math> = בסיס הארובההחלק הירוק, לכן לפיכך <math>=\frac{A(x+\Delta x)-A(x)}{\Delta x}</math> = הגובה הממוצע של הארובההחלק הירוק. לכן <math>A'(x)</math> = הוא הגובה הממוצע כאשר <math>\Delta x\to0</math> =, כלומר <math>f(x)</math>. {{משל}}</li><li># נתונה פונקציה קדומה <math>F(x)</math>. מחלק 1 ידוע גם ש-<math>A(x)</math> פונקציה קדומה. לפי משפט 0 יש קבוע c כך ש-<math>F(x)=A(x)+c</math>. לכן <math>F(b)-F(a)=A(b)+c-(\underbrace{A(a)}_{=0}+c)=A(b)=\int\limits_a^b f</math>. {{משל}}</li></ol>
=האינטגרל לפי דרבו=
==הקדמה - הגדרות==
[[קובץ:הגדרת הערכים באינטגרל לפי דרבו.png|שמאל|500px]]
תהי <math>f(x)</math> מוגדרת וחסומה ע"י <math>m:=\inf f(x)</math> ו- <math>M:=\sup f(x)</math> בקטע <math>[a,b]</math>. נגדיר את התנודה של f ע"י <math>\Omega=M-m</math>. כעת נגדיר חלוקה P של <math>[a,b]</math>:
{{left|<math>a=x_0<x_1<\dots<x_n=b</math>}}
לכל k כך ש-<math>1\le k\le n</math> נגדיר
<math>M_k:=\sup\{f(x):\ x_{k-1}\le x\le x_k\}</math> וכן <math>m_k:=\inf\{f(x):\ x_{k-1}\le x\le x_k\}</math>.
 
גרף (4).
בהתאם לכך נגדיר:
מכאן <math>\underline\int_a^b f=\sup_P \underline S(f,P)=0</math> ו-<math>\overline{\int}_a^b f=\inf_P \overline S(f,P)=b-a</math>. הם לא שווים ולכן f לא אינטגרבילית. {{משל}}
 
----
 
'''הגדרה:''' תהי P חלוקה של קטע <math>[a,b]</math>. חלוקה Q של <math>[a,b]</math> נקראת עידון או העדנה של P אם Q מכילה את כל נקודות החלוקה של P ועוד נקודות.