שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - הרצאה/8.5.11

אין שינוי בגודל, 15:01, 12 במאי 2011
/* הוכחה */
===הוכחה===
נקח <math>x\in[a,b]</math> כלשהיכלשהו. לכל n הפונקציה <math>f_n'</math> רציפה (נתון) ונוכל להפעיל את המשפט היסודי לומר <math>f_n(x)-f_n(x_0)=\int\limits_{x_0}^x f_n'</math>. נעביר אגף: <math>f_n(x)=f_n(x_0)+\int\limits_{x_0}^x f_n'</math>. כעת נתון שקיים <math>\lim_{n\to\infty} f_n(x_0)</math>, נקרא לו <math>\alpha</math>. יתר על כן נתון ש-<math>\lim_{n\to\infty} f_n'(t)=g(t)</math> במ"ש ב-<math>[a,b]</math> וכל שכן <math>\lim_{n\to\infty}f_n'(t)=g(t)</math> במ"ש בתת הקטע בין <math>x_0</math> ל-x. נסיק ממשפט 3 ש-<math>\lim_{n\to\infty}\int\limits_{x_0}^x f_n'=\int\limits_{x_0}^x g</math> נובע שלכל <math>x\in[a,b]</math> קיים <math>f(x)=\lim_{n\to\infty} f_n(x)=\lim_{n\to\infty}\left(f_n(x_0)+\int\limits_{x_0}^x f_n'\right)=\alpha+\int\limits_{x_0}^x g</math> והוכחנו את קיום הפונקציה הגבולית f. נותר להוכיח שהיא גזירה וש-<math>\forall x\in[a,b]:\ f'(x)=g(x)</math>. לפי הנתון כל <math>f_n'</math> רציפה ו-<math>g(t)=\lim_{n\to\infty} f_n'(t)</math> במ"ש על <math>[a,b]</math>. לכן משפט 2 נותן ש-<math>g</math> רציפה ב-<math>[a,b]</math> וכיוון שלכל <math>x\in[a,b]</math> מתקיים <math>f(x)=\alpha+\int\limits_{x_0}^x g</math> החלק הראשון של המשפט היסודי נותן <math>f'=g</math> לכל <math>x\in[a,b]</math>. {{משל}}
49
עריכות