שינויים

קפיצה אל: ניווט, חיפוש

תקציר פיזיקה למתמטיקאים, סמסטר ב תשע״ג

הוסרו 64 בתים, 21:21, 16 בספטמבר 2013
|
|}
כאשר <math>\mbox{Im}(\arctan)=\left[-\frac\pi2,\frac\pi2\right]</math> ו־<math>\mbox{atan2}(y,x):=\begin{cases}\arctan(y/x)&x>0\\\arctan(y/x)+\sgn(y)\pi&x<0\\\sgn(y)\frac\pi2&x=0\ \and \ y\ne0\\\text{undefined}&x=y=0\end{cases}</math>.
</li>
<li><math>\mathrm dx\,\mathrm dy\,\mathrm dz=\rho\,\mathrm d\rho\,\mathrm d\theta\,\mathrm dz=r^2\sin(\varphi)\,\mathrm dr\,\mathrm d\varphi\,\mathrm d\theta</math>.</li>
== דוגמאות חשובות ==
* '''מתנד (אוסצילטור) הרמוני:''' מערכת מכנית שבה פועל על גוף נתון כוח פרופורציוני להעתק הגוף ובכיוון מנוגד לו. המערכת הנ״ל היא דוגמה למערכת כזו.
** '''קפיץ:''' נתון קפיץ שקצה אחד שלו מקובע וקצהו השני נמצא בנקודה <math>\vec r_\text{loose}</math> במצב רפוי ובנקודה <math>\vec r</math> בזמן הנוכחי. אזי מופעל על קצהו השני ''כוח אלסטי'' <math>\vec F=-k\Delta x\sgn(\vec r-\vec r_\text{loose})</math> כאשר <math>k>0</math> הוא ''קבוע האלסטיות של הקפיץ'' ו־<math>\Delta x</math> השינוי באורך הקפיץ לעומת המצב הרפוי.
*** אם נניח שלקצה ההשני השני מחובר גוף החופשי לנוע בציר ה־<math>x</math> וש־<math>x(0)=0</math> היא נקודת שיווי המשקל (בה הקפיץ רפוי) אזי משוואת הכוחות בציר ה־<math>x</math> על הגוף תהא <math>F_x=-kx=m\ddot x</math> ולכן <math>x(t)=A\sin(\omega t+\phi)</math> כש־<math>m</math> מסת הגוף, <math>\omega=\sqrt\frac km</math>, <math>A</math> היא ''משרעת'' התנודה. את המשרעת ואת <math>\phi</math> ניתן למצוא עפ״י תנאי התחלה.<br />נגדיר את נקודת הייחוס של הקפיץ כנקודת שיווי המשקל. האנרגיה הפוטנציאלית היא <math>U=-\int_0^x-kx'\mathrm dx'=\frac{kx^2}2</math>.* '''מטוטלת מתמטית:''' בהנתן חוט מתוח שקצה אחד שלו מקובע מופעל על ועל הקצה השני מופעל ''כוח מתיחות'' <math>\vec T=-T\hat\mathbf n</math> כאשר <math>\hat\mathbf n</math> וקטור יחידה בכיוון החוט (כלומר, ככיוון הווקטור המתחיל בקצה הראשון ונגמר בקצה השני), ו־<math>T</math> גודל הניתן לחישוב. בד״כ מניחים שאורך החוט קבוע.<br />אם מטוטלת מוצבת בקצה החופשי ומישור התנועה אנכי אז האנרגיה הקינטית היא <math>\frac{mR^2\dot\theta^2}2</math> כאשר <math>R</math> אורך החוט והאנרגיה הפוטנציאלית היא <math>-mgR\cos(\theta)</math>. לכן הלגראנז׳יאן הפיזיקלי הוא <math>\frac{mR^2\dot\theta^2}2+mgR\cos(\theta)</math> ומשוואת אוילר–לגראנז׳ נותנת <math>mR^2\ddot\theta+mgR\sin(\theta)=0</math>.
* '''כוח נורמלי:''' משטח מפעיל ''כוח נורמלי'' <math>\vec N</math> על גוף המונח עליו שכיוונו ניצב לפני המשטח בנקודת המגע בין הגוף למשטח.
* '''החוק הרביעי של ניוטון:''' בהנתן שני גופים 1,2 מפעיל גוף 2 על גוף 1 ''כוח כבידה'' משמר <math>\vec F_{12}=-\frac{Gm_1m_2(\vec r_1-\vec r_2)}{|\vec r_1-\vec r_2|^3}</math>.<br />אם נבחר את האינסוף להיות נקודת הייחוס אז הפוטנציאל הגרביטציוני הוא <math>U=-\frac{Gm_1m_2}{|\vec r_1-\vec r_2|}</math>.
** בקרבתו מפעיל כדה״א מפעיל בקרבתו כוח הכבידה כבידה <math>-mg\hat\mathbf z</math> כאשר <math>m</math> מסת הגוף ו־<math>\hat\mathbf z</math> וקטור יחידה בכיוון מעלה.<br />אם נגדיר את נקודת הייחוס בראשית הצירים אז <math>U=-\int_0^z-mg\hat\mathbf z\mathrm d\vec r=mgz</math>.
* '''כוח מרכזי:''' כוח שפועל תמיד לכיוון נקודה קבועה במרחב.
* '''התנגשות פלסטית:''' הגופים נמצמדים זה לזה לאחר התנגשות. את המהירות המשותפת ניתן למצוא לפי חוק שימור התנע.
* '''התנגשות אלסטית:''' הגופים 1,2 נפרדים מיד לאחר ההתנגשות. נניח שהגופים נעים במימד אחד, שלא פועלים עליהם כוחות חיצוניים ושמהירותם לפני ההתנגשות הוא <math>v_i</math> ואחריה <math>u_i</math>. אזי משימור התנע מקבלים <math>m_1v_1+m_2v_2=m_1u_1+m_2u_2</math> וביחד עם שימור האנרגיה נובע <math>v_1+u_1=v_2+u_2</math>. משתי משוואות אלו ניתן לחשב את המהירויות אחרי ההתנגשות.