שינויים

קפיצה אל: ניווט, חיפוש
/* וריאצית מקדמים יחד עם שיטת קרמר למד"ר לינארית */
 *טענה - עבור פונקציות <math>c_1(x),...,c_n(x)</math> המקיימות את מערכת המשוואות  <math>\begin{cases}
c_1'y_1+...+c_n'y_n=0 \\
c_1'y_1'+...+c_n'y_n'=0 \\
c_1'y_1^{(n-2)} +...+c_n'y_n^{(n-2)}=0\\
c_1'y_1^{(n-1)}+...+c_n'y_n^{(n-1)}=f(x)
\end{cases}</math> מתקיים כי <math>y_p=c_1(x)y_1+...+c_n(x)y_n</math> הוא פתרון פרטי של המד"ר.**הוכחה:
מתקיים כי <math>y_p=c_1(x)y_1+...+c_n(x)y_n</math> הוא פתרון פרטי של המד"ר.
 
 
*הוכחה:
**<math>y_p'=c_1'y_1+\cdots+c_n'y_n+c_1y_1'+\cdots+c_ny_n'=c_1y_1'+\cdots+c_ny_n'</math>. (לפי המשוואה הראשונה.)
**באופן דומה <math>y_p''=c_1y_1''+\cdots+c_ny_n''</math>. (לפי המשוואה השנייה.)
***<math>y_p^{(n)}+a_{n-1}(x)y_p^{(n-1)}+\cdots + a_1(x)y_p'+a_0(x)y_p=f(x)+c_1(y_1^{(n)}+\cdots+a_0(x)y_1)+\cdots+c_n(y_n^{(n)}+\cdots+a_0(x)y_n)</math>
**כיוון ש<math>y_1,...,y_n</math> פתרונות למד"ר ההומוגנית הביטויים בסוגריים מתאפסים וסה"כ קיבלנו כי אכן <math>y_p'''+a_2(x)y_p''+a_1(x)y_p'+a_0(x)y_p=f(x)</math>.
 
 
*נכתוב '''שוב''' את ההוכחה, בעזרת סימן הסכימה (עשוי להיות נוח יותר או פחות):
**ראשית, ניתן להוכיח באינדוקציה כי לכל <math>0\leq m\leq n-1</math> מתקיים כי
**<math>D^m y_p = D^m \sum_{k=1}^n c_k(x)y_k = \sum_{k=1}^n c_k(x)D^m y_k</math>
**כעת בעזרת המשוואה האחרונה נקבל כי
**<math>D^n y_p = D D^{n-1}y_p = D\sum_{k=1}^nc_k(x)D^{n-1}y_k=\sum_{k=1}^n c'_k(x)D^{n-1}y_k + \sum_{k=1}^nc_k(x)D^ny_k=f(x)+\sum_{k=1}^nc_k(x)D^ny_k</math>
**נציב במד"ר ונקבל
**<math>Ty_p=D^ny_p +\sum_{t=0}^{n-1}a_t(x)D^ty_p=f(x)+\sum_{k=1}^nc_k(x)D^ny_k + \sum_{t=0}^{n-1}a_t(x)\left(\sum_{k=1}^n c_k(x)D^t y_k\right)=</math>
**<math>=f(x)+\sum_{k=1}^n c_k(x)\left(D^ny_k + \sum_{t=0}^{n-1}a_t(x)D^t y_k\right) = f(x)+0</math>
220
עריכות