שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - הרצאה/20.2.11

נוספו 30 בתים, 19:20, 21 בפברואר 2011
כעת אם A מציין את השטח שמתחת לגרף בוודאי ש-<math>\underline S\le A\le\overline S</math>, ז"א <math>\frac{n(n+1)(2n+1)}{6n^3}\le A\le\frac{n(n+1)(2n+1)}{6n^3}</math>. הדבר נכון לכל <math>n\in\mathbb N</math> ולכן נוכל להשאיף את <math>n\to\infty</math> ולקבל
<math>\frac13\le A\le\frac13</math>, לכן <math>A=\frac13</math>. {{משל}}
 
====הוכחה====
נגדיר <math>H(x)=F(x)-G(x)</math> ולכן <math>\forall x\in I:\ H'(x)=F'(x)-G'(x)=f(x)-f(x)=0</math>. לפי תוצאה ממשפט לגרנג' <math>F(x)-G(x)=H(x)=c\implies F(x)=G(x)+c</math>. {{משל}}
 
===הגדרת האינטגרל לפי דרבו===
תהי <math>f(x)</math> מוגדרת וחסומה ב-<math>[a,b]</math>. נאמר ש-f אינטגרבילית לפי דרבו ב-<math>[a,b]</math> אם <math>\underline\int_a^b f(x)dx=\overline{\int}_a^b f(x)dx</math> ואם הם שווים אז נגדיר <math>\int\limits_a^b f(x)dx</math> להיות הערך המשותף של <math>\underline\int f</math> ו-<math>\overline{\int} f</math>.
 
====דוגמה====
מכאן <math>\underline\int_a^b f(x)dx=\sup_P \underline S(f,P)=0</math> ו-<math>\overline{\int}_a^b f(x)dx=\inf_P \overline S(f,P)=b-a</math>. הם לא שווים ולכן f לא אינטגרבילית. {{משל}}
 
לפי עצם ההגדרות <math>M_i\ge M_i'^+,M_i''^-</math> ולפיכך {{left|<math>\begin{align}\overline S(f,P)-\overline S(f,Q)&\ge M_i\Delta x_i-\Big(M_i(x_i'-x_{i-1})+M_i(x_i-x_i')\Big)\\&=M_i\Big(\Delta x_i-(x_i'-x_{i-1}+x_i-x_i')\Big)\\&=M_i\Big(\Delta x_i-(x_i-x_{i-1})\Big)\\&=0\end{align}</math>}} (המשך בהרצאה הבאה)