הפולינום האופייני ותכונות של פולינומים

מתוך Math-Wiki

חזרה לסיכום הקורס: לינארית 2 (סמסטר א תשעג)


הערה: בסיכום זה, גם אם לא יצויין בכל מקום, [math]\displaystyle{ V }[/math] הוא מרחב וקטורי מעל השדה [math]\displaystyle{ \mathbb{F} }[/math], וכן [math]\displaystyle{ dim V=n }[/math]. בנוסף, [math]\displaystyle{ A\in M_n (\mathbb{F}) }[/math].


הגדרה:

תהי [math]\displaystyle{ A }[/math] מטריצה ריבועית מגודל [math]\displaystyle{ n\times n }[/math]. [math]\displaystyle{ p_A (x)=det(xI_n-A) }[/math] נקרא הפולינום האופייני של המטריצה [math]\displaystyle{ A }[/math].


הערות:

1. השורשים של [math]\displaystyle{ p_A (x) }[/math] הם ע"ע של [math]\displaystyle{ A }[/math].

2. אם [math]\displaystyle{ A=\begin{pmatrix} \lambda_1 & & \ast \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} }[/math] מטריצה משולשית (אפשר גם תחתונה וגם עליונה), אזי [math]\displaystyle{ p_A(x)=\prod_{i=1}^{n}(x-\lambda_i) }[/math].

3. [math]\displaystyle{ p_A(x) }[/math] הוא פולינום מתוקן, כלומר המקדם הראשי / המוביל (לפני החזקה הכי גבוהה) שווה ל-1.

4. [math]\displaystyle{ deg(p_A(x))=n }[/math].

5. אם [math]\displaystyle{ p_A(x)=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0 }[/math], אזי [math]\displaystyle{ a_0=(-1)^n det(A) }[/math], וכן [math]\displaystyle{ a_{n-1}=-tr(A) }[/math].


הערה: למטריצות דומות אותו הפולינום האופייני. בכיוון ההפוך לא נכון.


הגדרה:

יהי [math]\displaystyle{ T:V\rightarrow V }[/math] אופרטור לינארי. נגדיר [math]\displaystyle{ p_T(x)=p_A(x) }[/math] כאשר [math]\displaystyle{ A }[/math] היא המטריצה המייצגת של [math]\displaystyle{ T }[/math] ביחס לבסיס [math]\displaystyle{ B }[/math] כלשהו.


הערה: [math]\displaystyle{ p_T(x) }[/math] מוגדר היטב בגלל ההערה הקודמת.