קבוצה פורשת

מתוך Math-Wiki

קבוצה B של וקטורים במרחב וקטורי V מעל שדה F פורשת את המרחב, אם כל וקטור ב-v הוא צירוף לינארי (עם מקדמים מ-F) של וקטורי B.

כל קבוצה B פורשת את הקבוצה הנפרשת על-ידיה.

המקרה הסופי. נניח ש- [math]\displaystyle{ B=\{v_1,\dots,v_n\} }[/math] היא קבוצה סופית. אז B פורשת את V אם לכל [math]\displaystyle{ v\in V }[/math] קיימים [math]\displaystyle{ a_1,\dots,a_n\in\mathbb F }[/math] כך ש- [math]\displaystyle{ v=a_1v_1+\cdots+a_nv_n }[/math] .

המקרה הכללי. כאשר B אינה סופית נדרשת הגדרה מעט יותר מורכבת: B פורשת את V אם לכל [math]\displaystyle{ v\in V }[/math] קיימים [math]\displaystyle{ b_1,\dots,b_n\in B }[/math] ו- [math]\displaystyle{ a_1,\dots,a_n\in\mathbb F }[/math] כך ש- [math]\displaystyle{ v=a_1v_1+\cdots+a_nv_n }[/math] (אפשר להשתמש, כביכול, בוקטורים שונים מ-B לכל וקטור v).

דוגמאות

וקטורי היחידה [math]\displaystyle{ e_1,\dots,e_n }[/math] פורשים את מרחב הוקטורים [math]\displaystyle{ {\mathbb F}^n }[/math] . הקבוצה [math]\displaystyle{ \{1,x,x^2,\dots\} }[/math] פורשת את מרחב הפולינומים [math]\displaystyle{ {\mathbb F}[x] }[/math] .

הקשר לבסיסים

קבוצה פורשת ובלתי תלויה היא בסיס. כל קבוצה פורשת של V מכילה בסיס. כל קבוצה המכילה בסיס היא פורשת.