שיחה:88-132 אינפי 1 סמסטר א' תשעב: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
 
(619 גרסאות ביניים של 54 משתמשים אינן מוצגות)
שורה 1: שורה 1:
{{הוראות דף שיחה}}
{{הוראות דף שיחה}}
=ארכיון=
[[שיחה:88-132 אינפי 1 סמסטר א' תשעב/ארכיון 1| ארכיון 1]]
[[שיחה:88-132 אינפי 1 סמסטר א' תשעב/ארכיון 2| ארכיון 2]]
[[שיחה:88-132 אינפי 1 סמסטר א' תשעב/ארכיון 3| ארכיון 3]]
[[שיחה:88-132 אינפי 1 סמסטר א' תשעב/ארכיון 4| ארכיון 4]]


=שאלות=
=שאלות=
==איך מוכיחים שאין טור שמתבדר הכי לאט==
כלומר לכל טור חיובי <math>\sum a_n</math> שמתבדר קיים טור <math>\sum b_n</math> מתבדר כך ש: <math>\frac{b_n}{a_n}\to 0</math>
:בדומה למשפט רימן, ניתן "לדחוס" ו"לפזר" את האיברי הסדרה על מנת לקבל סדרה המתכנסת יותר מהר לאפס, שהטור עליה עדיין מתבדר. למשל אפשר את האיבר הראשון לחלק ל-10 ולהפוך אותו לעשרה אברים, את האבר הבא לחלק ב100 ולהפוך אותו למאה אברים וכן הלאה. (זה לא אלגוריתם מלא כמובן) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
אבל הסדרה <math>a_n</math> לא בהכרח יורדת
==איך מוכיחים את מבחן ראבה==
נראה לי לא הוכחנו אותו בכיתה
:לא חשבתי על זה האמת, זה פשוט משפט ידוע --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
==מבחן==
מותר להשתמש במבחן במשפטים ממערכי התרגול/ התרגולים שלא הזכרנו בהרצאה?
לגבי המשפטים וההוכחות שבאתר, לא את כולם צריך לדעת נכון? בהרצאה אמרו פחות
:זו שאלה למרצים, והמשפטים הם לפי מה שהמרצים אמרו. המשפטים באתר לא קשורים לזה באופן ישיר, פשוט השתדלנו לשים גם את מה שחייבים להוכיח. אני חושב שהדבר היחיד במערכי התרגול שלא מההרצאה הוא מבחן ראבה, לא? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::יש משפטים על רציפות במ"ש למשל שאם פונקציה רציפה במ"ש בכמה קטעים אז היא רציפה באיחוד שלהם ואם אני לא טועה גם זה שמכך שהנגזרת חסומה
:::המשפטים האלה מההרצאה עד כמה שאני יודע. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
==בקשר לגבולות של סדרות==
אם יש לי סדרה <math>A_n</math> של חיוביים ומצאתי סדרה <math>B_n>A_n</math> ששואפת לאפס, האם גם <math>A_n</math> תשאף לאפס אם כן למה?
:חוק הסנדויץ'. <math>0\le a_n\le b_n</math> --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
==חזרה על התרגילים==
בתרגיל 3
שאלה 4 סעיפים א,ב,ג
האם יש קשר בין <math>a_n</math> כלומר אברי הסדרה an1 an2.....
ל a אליו הוא שואף??
תודה
:לא, זה פשוט סימון לגבול. אפשר להחליף באות אחרת כמו L --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
==גבול החסמים העליונים==
האם מכך שידוע שגבול החסמים העליונים הוא מספר ממש נובע שהסדרה חסומה מלעיל?
:אני מניח שהכוונה לגבול החסמים העליונים כאשר מחסירים איברים מהסדרה. ברגע שיש חסם עליון ממשי החל משלב מסוים זה אומר שהסדרה חסומה על ידי המקסימום בין החסם העליון הזה לבין כל האיברים שנזרקו --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
==פתרונות למבחנים==
אם אני אכתוב את הפתרונות של מבחנים שונים עם Latex ב-Word, תעלו את קובץ הוורד של הפתרונות שלי לאתר?
:אם אתה כותב LaTex למה שלא תכתוב באתר? פתרונות באתר טובים בהרבה כיוון שקל לתקן אותם --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
אני כותב בעזרת [http://www.codecogs.com/latex/eqneditor.php] והאתר משום מה תמיד כותב לי '''עיבוד הנוסחה נכשל (שגיאת לקסינג)''', דוגמא:
<math>[a_n=S_{n-1}\Delta^2]</math>
הבעיה העיקרית היא לרדת שורה, כי אני יכול רק עם שורת הקוד <math>a_n=S_{n-1}\Delta^2</math> ללא שימוש בתרגום ל-LaTex, אבל זה עובד רק אם זאת שורה אחת, משום מה זה לא קורא את ה'\\'.
קראתי חלק מ-[http://en.wikipedia.org/wiki/Help:Displaying_a_formula] אבל לא מצאתי איך לתקן את השגיאה הזאת... ⊙_☉
מהו הקוד של ירידת שורה?
: (לא ארז) הקוד הוא \\ , אבל כמו שאמרת יש בעיה בו פה.
: איך עשית את ה'עיניים' בסמיילי?
::תרדו שורה באופן הפשוט ביותר- תפתחו נוסחא חדשה ותכתבו אותה למטה. סה"כ הויקי אינו מסמך לאטך, אלא הוא מאפשר לכתוב נוסחאות בודדות בלאטך. תקנתי למשל את הבעיה שהוצגה לעיל, הסלאש סוגר מרובע היה מיותר. יש כמה הבדלים קטנים מ-LaTex, אבל הם לא משמעותיים כפי שאתם יכולים לראות במערכי התרגול שכולם כתובים בפורמט ויקי. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
==איך מוכיחים שפונקציה קמורה רציפה?==
כלומר אם מתקיים <math>\forall 0\leq t\leq 1,x,x_0\colon f((1-t)x+t(x_0))\le(1-t)f(x)+tf(x_0)</math>
:נניח בשלילה כי היא אינה רציפה, לכן לפי היינה יש לה גבולות שונים על סדרות שונות. בעזרתן תוכל לסתור את הקמירות --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
:ואם זו אי רציפות סליקה, אזי או שהערך בנקודה גבוה מהגבול וזו סתירה לקמירות, או שהוא נמוך ואז ערכים הקרובים אליו סותרים את הקמירות אם מותחים מהערך בנקודה קו לנקודות באזור --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::אפשר להרחיב ? כלומר, איך מראים את זה בשימוש בנתונים הנ"ל ?
:::נביט שתי הסדרות השואפות לאותה נקודה, עליהן הפונקציה שואפת למקומות שונים. אחד המקומות גבוה מהשני. תיקח שתי נקודות מהסדרה הנמוכה שיש נקודה מהסדרה השנייה בניהן, אז הפונקציה תהיה מעל לקו העובר בין שתי הנקודות בנקודה השלישית, בסתירה. (תנסה לצייר את זה קודם, זה יעזור)--<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
==מתי שיעורי החזרה?==
תודה
<math>\sum x^2</math>
==תרגיל 12 שאלה 2 C==
הפתרון לא מובן לי. כיצד מתקיים השוויון הבא:
<math>\frac{-1}{2\sqrt\frac{x+1}{x-1}}\frac{2}{(x-1)^2}=\frac{(x-1)^2\sqrt{x-1}}{\sqrt{x+1}}</math>
::יש שם טעות. --[[משתמש:מני ש.|מני]] 18:27, 15 בפברואר 2012 (IST)
::::תודה רבה
==תרגיל 12 שאלה 3 a==
שוב הפתרון לא מובן לי. כיצד מתקיים:
<math>2^{x^e}=e^{\log(2^{x^e})}</math>
זה לא אמור להיות:
<math>2^{x^e}=e^{\ln(2^{x^e})}</math>
::הסימון <math>\log(x)</math> משמש לעתים (וגם בתרגיל זה) תחליף ל- <math>\ln</math> כלומר ללוגריתם בבסיס <math>e</math> . לפעמים הוא משמש כלוגריתם בבסיס 10 (לא הפעם). אין טעות בפתרון במקרה זה. --[[משתמש:מני ש.|מני]] 18:32, 15 בפברואר 2012 (IST)
::::תודה רבה
==שיעורי חזרה==
1)כדאי לתיכוניסטים להגיע לשיעורי החזרה של הבוגרים?
2)כדאי למי שיגיע ללואי להגיע גם למני?
'''הבהרה'''
שיעורי החזרה של לואי ומני מיועדים רק לסטודנטים שלנו ולא לתיכוניסטים (וזאת מכיוון שאנו רוצים למנוע קבוצות גדולות מדי)
יש להגיע רק לאחד מאיתנו, שכן אנחנו פותרים בדיוק את אותם התרגילים. --[[משתמש:לואי פולב|לואי]] 14:22, 16 בפברואר 2012 (IST)
:אבל זה ממש נוח לנו.. שיעור החזרה שלנו נגמר בדיוק כששלך מתחיל :(
==מבנה המבחן==
מה מבנה המבחן? כמה זמן הוא?
==אריתמטית של גבולות==
אם סדרה אחת שואפת לאינסוף והאחרת לאפס, למה שואפת המנה שלהן?
לגבי טורים, האם טור מתבדר פחות טור מתכנס, מתבדר? מה לגבי ההפך?
:: אם הסדרה ששואפת לאפס שואפת לאפס דרך ערכים חיוביים (מה שהיינו מגדירים בפונקציות שאיפה מימין) אז המנה של השואפת לאפס חלקי זאת ששואפת לאינסוף (אני מתכוון לפלוס אינסוף) תשאף לאפס והמנה ההפוכה תשאף לאינסוף.
אם השאיפה לאפס היא דרך ערכים שליליים אז המנות ישאפו לאפס ולמינוס אינסוף בהתאמה.
יכול להיות מצב שאחת המנות לא תשאף לגבול. למשל: אינסוף חלקי סדרה ששואפת לאפס אבל נניח שמשנה סימן ואז הגבול של האינסוף חלקי הסדרה ששואפת לאפס לא יהיה קיים. כי יהיו שתי תתי סדרות ששואפת לפלוס אינסוף ולמינוס אינסוף.
טור מתבדר פחות מתכנס הוא בהכרח מתבדר. כי נניח בשלילה שהוא מתכנס אם נחבר לטור שחיסרנו שנתון שהוא מתכנס נקבל טור מתכנס בסתירה לכך שהטור שממנו חיסרנו היה מתבדר.
מתכנס פחות מתבדר גם כן מתבדר משיקולים דומים. --[[משתמש:מני ש.|מני]] 13:06, 17 בפברואר 2012 (IST)
==ערכים של טורים==
האם צריך לזכור למבחן ערכים של טורים מסוימים? (לכמה הטור שווה) אם כן אלו ?(לדוגמה הטור ההרמוני המתחלף)


== תרגיל 2 שאלה 5 ==
בפתרון של מבחן משנה שעברות כתוב: קל לראות ש bn+1/bn שואף לאינסוף ולכןbn שואף לאינסוף. למה?
מה מייצג הסימן f  בחזקת -1. חשבתי שאחד חלקי הפונקציה אבל לפי פתרון המבחן משנה שעברה (שאלה 7) ניראה כאילו גוזרים אותה בתור הפונקציה ההפוכה ל- <math>f</math>
::עדיף לשאול 3 שאלות מנושאים שונים בנפרד ולא תחת נושא אחד. בכל מקרה:
לגבי השאלה הראשונה- לא. אין צורך.
לגבי השאלה השלישית- הסימון מייצג את הפונקציה ההפוכה.


האם חייבים להשתמש באפסילון לפתרון סעיף א'? או שזהו רק רמז?
שאלה שניה - <math>b_n>1</math> ולכן <math>b_{n+1}>b_{n+1}/b_n</math> לכן אם
הרבה יותר פשוט להוכיח שinfB הוא חסם מילעל של A ולכן בהכרח מתקיים מה שצריך להוכיח.
<math>\frac{b_{n+1}}{b_n}</math> שואף לאינסוף אז כך גם <math>b_{n+1}</math> (ולכן גם <math>b_{n}</math>)
:תראה, עקרונית הבקשה להשתמש באפסילון היא על מנת לכוון סטודנטים בכיוון הנכון, שלרוב מסבירים בניפנופי ידיים. אולם, הוכחה מילולית '''מדוייקת''' מתקבלת כמובן גם כן. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
--[[משתמש:מני ש.|מני]] 20:07, 18 בפברואר 2012 (IST)


== תרגיל 1 שאלה 1 ==
==נגזרת ורציפות==
אם f גזירה פעמיים ב- <math>[a,b]</math> אז הנגזרת רציפה בקטע הסגור הזה?
::כן. באופן כללי גזירות בנקודה גוררת רציפות בנקודה. כמו כן גזירות ימנית (שמאלית) גוררת רציפות מימין (משמאל בהתאמה).--[[משתמש:מני ש.|מני]] 20:09, 18 בפברואר 2012 (IST)


האם אני חייב לפצל לשני מקרים ולהשתמש בהגדרה של הערך המוחלט או שניתן להעלות בריבוע?
==הגדרת החזקה - שיעור ראשון==
איך מוכיחים ש <math>\sqrt[n]{x^m}=(\sqrt[n]{x})^m</math>?


הממ אני לא חושב שזה נכון מה שאמרת קח דוגמא a=-7 ו b=1 יצא לך לא נכון
:נניח שהם שונים, נעלה את שניהם בחזקת <math>n</math> ונקבל סתירה, לפי החוק <math>(a^n)^m=(a^m)^n</math> (אותו קל להוכיח) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::ציין אם זה נכון: בגלל ש- <math>n,m</math> הם מספרים טבעיים, נקבל שכל אחד מהאגפים שווה לפי עקרון הכפל הקומבינטורי ל- <math>a^{nm}</math> , ולכן לאחר ההנחה בשלילה נקבל
::<math>\sqrt[n]{x^m}\ne(\sqrt[n]{x})^m\Rightarrow x^m\ne((\sqrt[n]{x})^m)^n\Rightarrow x^m\ne((\sqrt[n]{x})^{mn}=((\sqrt[n]{x})^n)^m=x^m</math> בסתירה.
:::כן. וזה נובע מכך שמספרים חיוביים שונים בחזקה חיובית נותנים תוצאה שונה, גם את זה קל להוכיח באינדוקציה - הגדול יהיה גדול יותר. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


כע.. שמתי לב לטעות וכבר תיקנתי XD
==היינה באינסןף==
אם <math>\lim\limits_{x\to\infty}f(x)=L</math> , זה אומר לפי היינה שגם <math>\lim\limits_{n\to\infty}f(n^2-n\ln(n))=L</math> , נכון?
::נכון. --[[משתמש:מני ש.|מני]] 12:58, 19 בפברואר 2012 (IST)


== תרגיל 1 שאלה 3 ==
==מבחן תשנ"ט שאלה 2ג.==
במבחן כתוב <math>\frac{1}{\log\left(\frac{1}{n}\right)}</math> כאשר n מ-1 עד אינסוף. ב-1 הביטוי לא מוגדר.
::נכון. בימים אלה אנחנו חוגגים בר מצווה לטעות. --[[משתמש:מני ש.|מני]] 19:36, 19 בפברואר 2012 (IST)
:::זאת תשובה ממש משעשעת :) (my work here is done!)


אני די מסתבך עם זה עברתי על ההוכחה של אי שיוויון המשולש ובכל זאת אין לי שום כיוון התחלה
==גבולות==
אם יש איזשהי דרך לעזור בלי לומר את התשובה באופן מלא אני אשמח לעזרה
אם סדרה <math>a_n</math> שואפת למספר טבעי ממשי מאפס וסדרת <math>b_n</math> שואפת לאפס דרך החיוביים. <math>\frac{a_n}{b_n}</math> שואפת לאינסוף? או שבמנה חייב להיות מספר ממשי ולא משהו ששואף אליו?
:מה הכוונה למספר ממשי "מאפס"? כלומר מהצד שקרוב יותר לאפס? בכל מקרה הגבול הזה אכן יהיה אינסוף --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


(לא מתרגל) כשהוכחתי את הטענה, נעזרתי באי שויוון המשולש פעמיים ובמשפטים שלמדנו בהרצאה והזכרנו בתירגול.
==דוגמה 2 לטורים חיוביים==
רמז קטן: (a-b) + b = a
יש [http://math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%98%D7%95%D7%A8%D7%99%D7%9D/%D7%9E%D7%91%D7%97%D7%A0%D7%99%D7%9D_%D7%9C%D7%97%D7%99%D7%95%D7%91%D7%99%D7%99%D7%9D/%D7%93%D7%95%D7%92%D7%9E%D7%90%D7%95%D7%AA/2  טעות] במכנה כשמפתחים את המנה של אברים עוקבים.
לא צריך פעמיים תניח בה"כ |a|>=|b|


צריך שני 'משפטים' בתרגיל הזה: <math>|c| < d \Leftrightarrow -d<c<d</math> וגם אי שוויון המשולש כמו שהזכירו לעיל.
:מוזמן לתקן. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
לא צריך מספיק אי שיווין המשולש
::תיקנתי.


== נראה לי שאלה 5 2 הייתה בבגרות השנה מועד ב 806 ==
==<math>0^0</math>==
יש דוגמה לגבול מהצורה <math> 0^0</math> ששואף ל-2?


זה עם סכום של סדרה חשבונית לא?
:<math>2\Big(\frac{1}{n}\Big)^{\frac{1}{n}}</math> --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::לא לזה התכוונתי... רציתי שכל הביטוי יהיה רק חזקה ומעריך, כלומר שהוא יהיה מהצורה <math>0^0</math> בלבד. באותה המידה יכולת להוסיף 1.
:::<math>\left(\frac{1}{2^nn}\right)^{-\frac{1}{n}}</math> ככה? (: --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::::כן, תודה! פשוט להכניס את ה2 לבסיס... (<math>\left(\frac{1}{2^n}\right)^{\frac{1}{n}}</math> זאת דוגמה יפה יותר, כי אז הביטוי יהיה קבוע למרות הצורה <math>0^0</math>)


== טעות במערכי תרגול ==
==דוגמה 3 לטורים חיוביים==
[[http://math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%98%D7%95%D7%A8%D7%99%D7%9D/%D7%9E%D7%91%D7%97%D7%A0%D7%99%D7%9D_%D7%9C%D7%97%D7%99%D7%95%D7%91%D7%99%D7%99%D7%9D/%D7%93%D7%95%D7%92%D7%9E%D7%90%D7%95%D7%AA/3]] התכוונתם לרשום ש'''לפחות''' שני שלישים, כנראה. מה שכתוב כרגע נכון רק ל-n ששקול ל0 מודולו 3.


כתבת ששלמות היא אקסיומה
נוסף על כך, ההתקדמות קצת מהירה מדי (עבורי) שם - כדאי להוסיף הסבר מילולי נוסח
לאמרות שהיא נובעת מההגדרה של R
אם אתה מתייחס לשלמות כאקסיומה אתה צריך להוכיח שקיים R


:מתייחסים לזה כאקסיומה כיוון שאנו לא מוכיחים את זה. אבל זה נכון שזו אינה אקסיומה באמת, וזה נובע מההגדרות של שדה הממשיים. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
"נקטין את כל האברים במכפלה שגדולים מ- <math>\frac{n}{3}</math> , ומכיון שיש לפחות <math>\frac{2}{3}n</math> כאלה נקבל ש
הגדרנו בכיתה את R ע"פ ייצוגים עשרוניים אינסופיים ואז זה כבר קל להוכיח שלמות


<math>n!=1\times2\times\cdots\times\left\lfloor\frac{n}{3}\right\rfloor\times\left(\left\lfloor\frac{n}{3}\right\rfloor+1\right)\times\cdots\times n\ge1\times2\times\cdots\times\left\lfloor\frac{n}{3}\right\rfloor\times\left(\frac{n}{3}\right)^{\frac{2}{3}n}\ge\left(\frac{n}{3}\right)^{\frac{2}{3}n}</math>


ומכיוון ששני האגפים חיוביים ניתן להעלות בריבוע."
:(לא התייחסתם, אז הוספתי.)


==דוגמה 5 לטורים חיוביים==
הוכחת האינדוקציה נראית לי שגויה. (מה שכתוב שם לא הגיוני)


צריך להיות פשוט <math>\frac{b_{n+1}}{b_1}=\frac{b_{n+1}}{b_n}\cdot\frac{b_n}{b_1}\ge\frac{a_{n+1}}{a_n}\frac{b_n}{b_1}\ge\frac{a_{n+1}}{a_n}\frac{a_n}{a_1}=\frac{a_{n+1}}{a_1}</math> (א"ש ראשון לפי הנתון, שני לפי הנחת האינדוקציה)
:תוקן --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


תרגיל 1 4 א'
==טעויות במדמ"ח 11 שאלה 4==
בסעיף ב' יש טעות טריגונומטרית, בסעיף ד' המעבר האחרון שגוי.


אני לא כל כך מבין איך ניתן לפתור אותו:
==שאלה 1 א במבחן שהיה ב-2008==
הכוונה ל-x ממשי או טבעי?
בשאלה כתוב הגבול של הסדרה <math>\lim_{n\to\infty}\bigg[\sqrt{n-\sqrt{n}}-\sqrt{n-\sqrt[3]{n}}\bigg]</math>. אפשר רמז לפתרון הגבול הזה?
אם x ממשי: אפשר להיעזר במשתנה בשביל הפתרון? (k כאשר הוא משתנה ומייצג כל פעם מס' זוגי אחר בין 1 ל-n)
::תכפילו ותחלקו ב- <math>\sqrt{n-\sqrt{n}}+\sqrt{n-\sqrt[3]{n}}</math> .
--[[משתמש:מני ש.|מני]] 19:17, 21 בפברואר 2012 (IST)
::ואז?
::מצמצמים את המונה והמכנה בביטוי "הכי גדול" כלומר ב- <math>\sqrt{n}</math>  --[[משתמש:מני ש.|מני]] 20:40, 21 בפברואר 2012 (IST)


: אני הגדרתי כמה קבוצות שבעזרתן (בעזרת איחוד שלהן) הבעתי את ה x המבוקשים... הוכחתי באינדוקציה.
==פונקציות==
איך באופן כללי לענות על שאלות רציפות? עם כל ההגדרות כמו שכתוב במערכי תרגול או שאפשר גם לכתוב איפה שאפשר ב"הגיון"?
:לפי הגדרות ולפי משפטים בלבד --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== תרגיל 1 שאלה 4 ==
==שאלה==
הוכיחו כי הטור <math>\sum_{n=1}^\infty a_n</math> מתכנס בהחלט אם ורק אם קיים <math>C>0</math> כך שלכל סדרה <math>\{b_n\}_{n=1}^\infty</math> המקיימת כי
<math>|b_n|\le1</math> לכל <math>n\in\N</math> וכן <math>\lim_{n\to\infty}b_n=0</math> מתקיים כי <math>\sum_{n=1}^\infty a_n\cdot b_n\le C</math>


שאלה מקדימה, ראיתי שיש אגף נפרד לתרגילים לתלמידי מדעי המחשב. האם כאשר אין תרגול למדעי המחשב (כמו תרגול 1) אז התרגילים למתמטיקאים משותפים למדמ"ח?
נ"ב, אני משום מה לא מצליח לרדת שורה, למרות שאני לוחץ על אנטר. תודה
:לא, אתם צריכים רק לבצע את התרגילים שלכם. מכיוון שייתכן והיה בלבול שמתי את התרגיל של המתמטיקאים לשבוע (ממילא זה אותו דבר בשלב הזה). --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


שאלה 4 סעיף א', בדקתי תחומים וגיליתי שיש מספר רב של תחומים (משתנה לפי N) אך לא מצאתי דרך לנסח את זה בנוסחא אחת כתלות ב N. האם הפתרון צריך להיות מילולי?
:השאלה הופיע בתרגילי הבית של תשע"א: [http://math-wiki.com/images/b/b9/10Infi1Targil7Sol.pdf ראה פתרון של תרגיל 8].  


:אפשר לתאר את התחומים באופן מילולי אך מדוייק. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
:בכיוון השני אתה יכול גם להראות שהסדרה <math>a_n</math> מקיימת את תנאי קושי, כך שבכל פעם תבחר סדרה מתאימה.


== תרגיל 1, שאלה 1, בתרגיל של מתמטיקאים ==
==שאלה ממערכי תרגול - פונקציות קושי==
היי ארז!
מצ"ב מערך תרגול  http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%95%D7%AA/%D7%92%D7%91%D7%95%D7%9C_%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94
בשאלת ההוכחה הראשונה של קושי בה צריך להוכיח שהגבול הוא שמונה, לאחר שעשינו מכנה משותף ופישטנו את הביטוי והשאפנו את איקס ל-2 מה מעיד על כך שצריך להגדיל את השבר?ו..איך מוצאים את הדלתא????


האם התכוונתם שם גדול שווה במקום שווה?
:אנחנו רוצים להגדיל את כל הביטוי, ולמצוא דלתא שמבטיח שאפילו אחרי שהגדלנו הביטוי יהיה קטן מאפסילון ללא תלות באיקס. על מנת להגדיל את הביטוי אנחנו צריכים להקטין את המכנה. על מנת להקטין את המכנה אנחנו צריכים למצוא מספר גדול מאפס שקטן תמיד מהמכנה. אנחנו בוחרים דלתא שנותן לנו מספר כזה.. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== בתרגיל להלן שיש לו קישור  ==
לא ברור איך ידעת מאיפה להתחיל .. אפשר הסבר לאיך הגעת לנקודת ההתחלה מה רמז לך לזה?
תודה
תודה
::לא... התכוונו בדיוק למה שרשום :) --[[משתמש:לואי פולב|לואי פולב]] 01:58, 6 בנובמבר 2011 (IST)
http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A1%D7%93%D7%A8%D7%95%D7%AA/%D7%9E%D7%95%D7%A0%D7%95%D7%98%D7%95%D7%A0%D7%99%D7%95%D7%AA


== תרגיל 1 למדמח ==


מתי סטודנטים למדעי המחשב צריכים להגיש את התרגיל הראשון?
:יש שם כמה תרגילים, הכוונה לראשון? כאשר אנחנו מקבלים סדרה שאנו רוצים להוכיח שהיא מתכנסת יש לנו מספר שיטות. האחת היא להראות מונוטוניות וחסימות, השנייה היא למצוא נוסחא מפורשת (קשה במקרה זה) ואחרת היא להראות תנאי קושי. אין דרך לדעת בוודאות מראש איזו שיטה עובדת, יש לנסות את כולם עד אשר מצליחים לפתור את התרגיל. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
:בכל שבוע עליכם להגיש תרגיל --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== שאלה כללית ==
::סורי שלא ציינתי זאת התכוונתי לתרגיל השני עם a1=אלפא b1=ביטא    נ.ב- "לא קונה בלי תימני"


במקום לרשום קיים n0 כך שלכל n>no.... אפשר לרשום במילים שזה מתקיים החל ממקום מסוים?
:::כמו בתרגילים אחרים, העצה היא להתחיל לרשום כמה איברים ראשונים של הסדרה. מהר מאד רואים שאחת עולה, השנייה יורדת, והשנייה גדולה מהראשונה. אחרי שרואים את זה ניגשים להוכיח במרץ --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
:אם זה מדוייק, אפשר. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== תרגיל 4 שאלה6 ==
== היינה- שאלה קטנטנה ==


רשמתם רקורסיה בלי לרשום את a1
היי, בקובץ המצורף http://math-wiki.com/images/7/7b/10Infi1Targil8Sol.pdf בשאלה 3.
זה בכוונה?
השאלה פשוטה עקרונית. אבל מבחינת ההוכחה יכולתי לומר שמתקיים לכל סדרה לקחת בפרט סדרה כלשהי (נגיד 1 חלקי n ) ששואפת ל-0 להפעיל עליה את f ולומר שמדובר על מכפלה של אפסית בחסום ולכן הגבול אפס. אמת?  
:כן, זה בכוונה. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
:לא מספיק להוכיח לסדרה מסויימת, חייבים להוכיח שזה מתקיים לכל סדרה. אחרת יכול להיות שעל הנקודות של 1 חלקי n קורה משהו אחד, ועל נקודות אחרות בסביבת אפס קורה משהו אחר --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
בסדר הסתדרתי


== אפשר להעלות את תרגיל 3?? ==
== הוכחה של גבול  ==


כותרת
היי,
הכל רשום בשנה שעברה :)
השאלה: הוכח שlimcosx=1 כאשר x שואף ל-0.
בוחרים סדרה כלשהי שמתכנסת ל-0 ואז מה ניתן לעשות?
תודה


== תרגיל 2 שאלה 3 ==
:תלוי מאיפה השאלה בחומר. בהרצאה הוכחנו שקוסינוס וסינוס הן פונקציות רציפות, זה נובע ישירות מהגדרת הרציפות --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


האם אפשר להוכיח ש0 אינו החסם התחתון באמצעות דוגמא (קיים A ש0 אינו החסם התחתון שלו)?
== לא הצלחתי שאלה במבחן מסוים... ==
:לא. כאשר רשום "תהי A" הכוונה שצריך להוכיח את זה לכל A. (זה נכון בתרגילי בית וכמו כן במבחנים) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== תרגיל 2 שאלה 5 ב ==
http://www.studenteen.org/inf1_exam_zalcman_2009_a.pdf תרגיל 2 ג  הוכחתי שזה מתכנס בתנאי לפי דריכלה אבל אין לי רעיון עם מתכנס בהחלט...
:זה לא מתכנס בהחלט. בלי הקוסינוס זה נכון לפי מבחן העיבוי, עם הקוסינוס ניתן להוכיח שקוסינוס בערך מוחלט גדול מקבוע מסויים לפחות כל פעם שנייה. הרי אם הוא קרוב לאפס, אחרי אחד הוא יתרחק ממנו. לכן זה גדול מקבוע כפול טור מתבדר ולכן מתבדר. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::לא הבנתי כל כך איך אני מוכיח שזה מתכנס בתנאי...
:::מבחן דיריכליי, הוא רשום במפורט במערכי תרגול. '''אבל''' להבנתי אסור לכם להשתמש בזה במבחן, וכנראה לא יהיה תרגיל כזה במבחן. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


מצטער מראש על שאלה ארוכה,
== לא הצלחתי לסווג את הנקודות קיצון ==


אם עבור כל a ב A וכל b ב B מתקיים b>=a ונניח בשלילה ש A∩B היא קבוצה ריקה
http://u.cs.biu.ac.il/~sheinee/tests/math/88132/4ef1a2e00a144.pdf שאלה 6 א את 0 הצלחתח בעזרת לופיטל אבל לא הצלחתי את PI/2+PK
::מדובר בסוג שני. מספיק להוכיח שהגבול השמאלי ב <math>\frac{\pi}{2}</math> אינו סופי. (אם הוא אינסופי או לא קיים בכל מקרה מדובר בסוג שני) וזה משליך גם על כל הנקודות האחרות. מספיק להוכיח שהגבול  השמאלי של המונה אינו סופי. (למה?) נניח בשלילה שהגבול סופי אזי בהכרח הגבול בין 1 למינוס 1 (נובע מערכי סינוס). נניח שהגבול הוא a.  כעת ניתן להפעיל arcsin על שני האפים שהיא פונקציה רציפה בתחום הגדרתה (משתמשים כאן ברעיון של שאלה 2 מתרגיל 10) וכמו כן לזכור ש arcsinsin t=t  ונקבל ש
<math>\lim_{x\to (\frac{\pi}{2})^-}tan x=arcsin a </math>
אבל arcsin a הוא מספר סופי ומצד שני ידוע ש <math>\lim_{x\to (\frac{\pi}{2})^-}tan x=\infty </math>
וזו סתירה להנחה.--[[משתמש:מני ש.|מני]] 01:08, 8 באפריל 2012 (IDT)


משמע ש b > a לא? (כי אם היה a=b אז החיתוך היה מכיל את האיבר הזה).
== מבחן נוסף... ==


ואז אפשר לקחת אפסילון של (b-a)/2 ולהוכיח שבמקרה ש infB=supA האפסילון הזה
http://www.studenteen.org/ חשבון אינפי 1 בחינות של שמואל קפלן קובץ 2 תרגיל 1 א


יוצר סתירה ולכן A∩B לא יכולה להיות קבוצה ריקה אף פעם בתנאים של השאלה:
:אפשר להוכיח באינדוקציה ש<math>2^{n}>n^{3}</math> החל מn מסויים, מכאן תמשיך!
אופס קודם התבלבלתי תרגיל 1 ג
::ניתן להיפטר מarcsin ע"י הצבת <math>x=sint</math> ואז מקבלים גבול כש <math>t</math> שואף לאפס
מקבלים גבול מהצורה של 1 בחזקת אינסוף. אותו אפשר לפתור ע"י הטלת ln (בסוף צריך להפעיל e בחזקת התוצאה הזו כדי לקבל את הגבול המקורי) אחרי השלב של הln פותרים בעזרת לופיטל. --[[משתמש:מני ש.|מני]] 19:36, 8 באפריל 2012 (IDT)


infB=supA=M
== אפשר רמז? ==


לפי הגדרת חסם עליון קיים a ב A כך ש a > M - ε  ולכן a + ε > M
אם פונציה f 
1.רציפה על [a,b] ,
2. קיימת נגזרת סופית בקטע ..(למיטב הבנתי הנגזרת חסומה..)
3. הפונקציה לא לינארית..(במה בדיוק זה עוזר לי?)
צ"ל שקיימת לפחות נק' אחת שבה הנגזרת יותר גדולה מהנגזרת בין a לb  לפי לגראנג'..(כאילו
f(b) -f(a)/b-a< f'(c)
::ברגע שהפונקציה לא ליניארית אז לא יתכן  ש <math> f(x)=f(a)+(x-a)\frac{f(b)-f(a)}{b-a}</math>
לכל x.
כלומר בהכרח קיים <math>a<x<b</math> כך שבמקום שוויון יש אי שוויון.
אם למשל  <math>f(x)</math> גדול מאגף ימין אז ניתן להסתכל בביטוי
<math> \frac{f(x)-f(a)}{x-a}</math> ולהסיק ש...
אם אי השוויון הוא בכיוון השני אז ניתן להתבונן ב <math> \frac{f(b)-f(x)}{b-x}</math> ולהסיק הדרוש. --[[משתמש:מני ש.|מני]] 20:08, 8 באפריל 2012 (IDT)


לפי הגדרת חסם תחתון קיים b ב B כך ש b < M + ε ולכן b - ε < M


ולכן קיימים a ו b שמקיימים: b - ε < a + ε => b - a < 2ε


כעת נציב כ ε את b-a / 2 (אפשר לעשות זאת כי b-a > 0 אם A∩B קבוצה ריקה ו b>=a)
תודה :-)


ונקבל b - a < b - a שזה ודאי לא נכון
== מבחן השורש של קושי לטורים חיוביים. ==


בהוכחת מבחן השורש לטורים חיוביים נעזרים במשפט עזר על אפייון הלימסופ, בו נאמר פחות או יותר-
תהי '''סדרה כלשהי''', אם קיים מספר כלשהו אשר גדול מהלימסופ של הסדרה, אזי קיימים לכל היותר מספר סופי של איברים..כמו כן קיים ניסוח גם למקרה ההפוך.
השאלה שלי היא, האם אין צורך לדרוש את הקיום הזה לכל סדרה חסומה?
::לא. זו דוגמא טובה לתנאי שמתקיים באופן ריק. אם למשל הסדרה לא חסומה מלעיל אז הגרירה: "אם קיים מספר כלשהו אשר גדול מהלימסופ של הסדרה, אזי קיימים לכל היותר מספר סופי של איברים.."  היא בהכרח '''פסוק אמת''' כי הרישא היא שקרית (הלימסופ הוא אינסוף ולכן לא קיים מספר הגדול ממנו) ולכן לא משנה מה תוצאת הגרירה, הפסוק יהיה פסוק אמת. --[[משתמש:מני ש.|מני]] 11:25, 9 באפריל 2012 (IDT)


מצד שני החיתוך של 2 קבוצות פתוחות שבהן infB=supA אכן נותן קבוצה ריקה..
== שאלה למבחן ==


אתה יכול לכוון אותי למיקום הטעות בהוכחה?
אפשר להשתמש בעובדה שהטור <math>\forall \alpha \in (-1,0]: \sum_{n=1}^{\infty} n^{\alpha}</math> מתבדר
:תשובה- הטעות שלך קשורה לשאלה הפילוסופית מה קדם למה הביצה או התרנגולת. אצלנו ε "קדם" לa,b ולכן לא יכול להיות מוגדר באמצעותם. כשאתה אומר למשל:לפי הגדרת חסם עליון קיים a ב A כך ש a > M - ε  ולכן
a + ε > M
המשמעות היא שלכל ε חיובי קיים a כך ש..
זאת אומרת אם תבחר ε חיובי אז מובטח שקיים a (שתלוי באפסילון) כך שמתקיים אי השויון שציינת. באופן דומה אם בחרת מראש אפסילון חיובי אז קיים b שמקיים את מה שטענת.
אם למשל תבחר ε=0.1 אז יהיו קיימים a,b מסויימים ואם תשנה ותקבע  ε=0.01 אז שוב יהיו קיימים a,b שמקיימים את אי השוויונים שצינת אבל יתכן שיהיו שונים מa,b שמתאימים לε=0.1. בכל מקרה קודם בוחרים אפסילון ואז נקבעים a,b התלוים באפסילון. ממילא אי אפשר להגדיר את אפסילון באמצעות a,b כמו שעשית בסוף.
כי a,b לא מוגדרים בכלל לפני שבוחרים את אפסילון.
:--[[משתמש:מני ש.|מני]]


== תרגיל 2 שאלה 8 ==
ושהטור <math>\forall \alpha \in (-\infty ,-1]: \sum_{n=1}^{\infty} n^{\alpha}</math> מתכנס? או שצריך להוכיח כל פעם?


האם A בחזקת -1 לא חסומה בכלל או לא חסומה מלעיל ?
:רק תיקון קל, הטור מתכנס אם <math>\alpha<-1</math>.
כי אם ניקח לדוגמא את A להיות כל הממשיים בין 0 (בלי אפס) עד לX כלשהו
:: תיקנתי...
0 חסם תחתון של A אבל בעבור A בחזקת -1 כל מספר שלילי הוא חסם מלרע
::שים לב שקבוצה חסומה אם ורק אם היא חסומה מלעיל '''וגם''' חסומה מלרע. כלומר קבוצה אינה חסומה אם ורק אם היא אינה חסומה מלעיל '''או''' שאינה חסומה מלרע.
--[[משתמש:מני ש.|מני]] 17:57, 9 בנובמבר 2011 (IST)


== בוחן באינפי ==
:::עקרונית כן, תשאל בזמן המבחן. אם אומרים שלא, אז תוכיח באמצעות מבחן העיבוי (קלי קלות) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


מתי הבוחן הראשון שלנו באינפי?
::::קל לראות ש... - [http://knowyourmeme.com/photos/230191-wtf-is-this-shit בודאי!]
:לא קיבלתם לוח מפורט עם הזמנים של כל הבחנים? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::::: נו לאן הגענו ששואלים שאלה ועונים עליה עם מימי ?  
תודה בכל מקרה ארז :-)


::לא ניראה לי.
== רציפות במש ==


::יש מצב אתה בודק מתי זה?
x*logx היא רציפה במש? נראה לי שלא אבל לא הצלחתי למצוא סדרות שיפריכו לי
::יש את הדוגמא הזו במערכי התרגול בנושא רציפות במ"ש. --[[משתמש:מני ש.|מני]] 15:18, 10 באפריל 2012 (IDT)


:::אני מצב בודק מפרסם בהודעות בחנים תאריך בבקשה --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
== האם סביר שיהיה שאלה על נקודות הצטברות במבחן? ==


== תרגיל 3 שאלה 1 ==
ואם כן...
מה עושים עם זה :
תהי A קבוצת נקודות ממשיות. נקרא נקודה פנימית של A  לנקודה  a שייכת ל A עבורה יש סביבת אפסילון מוכלת(עבור אפסילון>0  כלשהו) המוכלת כולה ב- A.
הוכיחו כי אם B היא קבוצה המכילה את כל נקודות ההצטברות שלה, אזי הקבוצה המשלימה שלB  (שהיא R/B ) אינה מכילה אף נקודת הצטברות שאינה נקודה פנימית של R/B .
::אני בספק אם תהיה שאלה בנושא.  אבל,  בהנחה שנקודות הצטברות נלמדו בהרצאה אני מניח שהסיכוי הוא לא אפס. איך אפשר להוכיח? ניתן להוכיח אפילו יותר- שבתנאי השאלה R\B  אינה מכילה אף נקודה  שאינה נקודה פנימית של R\B (בלי קשר אם הנקודה היא נק' הצטברות). נניח בשלילה שקיימת נקודה x השייכת לR\B וגם  שx אינה נק' פנימית של R\B.
x אינה נק' פנימית של R\B  ולכן משלילת ההגדרה של נק' פנימית נקבל שכל סביבת אפסילון של x לא מוכלת ב R\B. זה שקול לכך שהחיתוך של כל סביבת אפסילון של x עם B אינו ריק. כמו כן מכיון שx שייכת ל R\B
אז לכל אפסילון > 0 בחיתוך הנ"ל שאינו ריק קיימת נקודה השונה מx. לכן עפ"י ההגדרה (או אחת השקולות)
x נקודת הצטברות של B אבל הקבוצה B מכילה את כל נקודות ההצטברות שלה, ומכאן x שייכת לB בסתירה לכך ש  x שייכת לR\B.--[[משתמש:מני ש.|מני]] 15:32, 10 באפריל 2012 (IDT)


האם אפשר להשתמש ב1, א, באריתמטיקה ולהגיד ש 1 חלקי שורש N שואף ל 1 חלקי אינסוף וזה שווה ל-0?
== רציפות במש ועוד שאלה... ==
:האם במשפט הארתימטיקה למדנו שאחד חלקי אינסוף שווה אפס? אם כן אז כן, אם לא אז לא. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


::זה בתרגיל 3, ורוב הסיכויים שבשבוע הבא כבר נלמד את זה :P
להוכיח או להפריך שxcosx רציפה במש(אני די בטוח שזה הפרכה) ולהוכיח ש:הטור an מתכנס בהחלט אם ורק אם לכל סדרה bn המתכנסת ל0 הטור anbn מתכנס
::אז אפשר?
הצלחתי את הכיוון של אם an מתכנס בהחלט אבל לא הצלחתי את השני טנקס!!!
וגם x*sin(1/sinx) למצוא נקודות אי רציפות:מצאתי שx=pi*k זה נקודות האי רציפות ומצאתי ש0 זה נקודת אי רציות סליקה אבל בקשר לשאר הנקודות אני לא יודע


:::מה זה משנה, הרי ציון התרגיל לא נחשב לשום דבר (אני אקח ניחוש פרוע שאתה תיכוניסט). --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


:::: אהבתי את כיוון המחשבה :)
לגבי <math>xcosx</math> אתה בוחר שתי סדרות <math>x_n , y_n</math> כך שהפרשן מתכנס ל-0, אבל <math>f(x_n)-f(y_n)</math> לא מתכנס ל-0.


== התחכמויות ==
לגבי הנקודות אי רציפות אני מזכיר שאם אחד הגבולות החד צדדים הוא אינסוף, זה נקודת אי רציפות מהסוג השני.
אם שני הגבולות החד צדדיים שווים, אבל בנקודה הזאת הפוקנציה לא מוגדרת, זה נקודת אי רציפות סליקה.


לדוגמא בתרגיל 3 שאלה 4 סעיף ה התבקשנו להוכיח שאם an מתכנסת ל 0 אז <math>|\frac{1}{a_n}|</math> מתכנסת לאינסוף. הטענה אכן נכונה אם לכל n מתקיים an != 0 ... במקרים כאלו צריך להוכיח או שצריך להתחכם?
לגבי הטורים: מניחים שלכל סדרה <math>b_n</math> שמתכנסת ל-0 הטור <math>\sum a_n b_n</math> מתכנס, ואז אתה בוחר בחכמה את הסדרה <math>b_n</math> בצורה כזו שאתה מגיע ישירות מהטור <math>\sum a_n b_n</math> לטור <math>\sum |a_n|</math> . מקווה שעזרתי :-)
:לתאר את שתי הסיטואציות (התחכמתי על המתחכם) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
אפשר כאילו עזרה יותר ממה שברור מאליו? אני ניסיתי איזה שעה ומשהו את זה ולא הצלחתי..


"הגונב מגנב אינו גנב"---> "המתחכם עם המתחכם אינו מתחכם" ?
:יש תשובות לכל השאלות האלה במערכי התרגול ובפתרונות תרגיל הבית מהשנה ומשנה שעברה. לגבי השאלה האחרונה, מחשבים גבולות חד צדדיים בעזרת לופיטל --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


:בכל מקרה התחכמתי(או הייתי משועמם) לפני ששאלתי ועניתי על שתי האפשרויות O_O
== מועד א' מדמ"ח שאלה 4 א' ==


==ניסוח קיום גבול==
בפתרון רשמתם ש: כיוון שגבולותיה של הנגזרת באפס ובאינסוף סופיים והיא רציפה בכל נקודה בקטע, היא חסומה בקטע.  
נניח שהראיתי שלכל e>0 (לא הצלחתי לכתוב אפסילון בלי שהעברית תציק) הערך המוחלט קטן מ2e (או כל קבוע אחר). ברור שבעצם הראיתי קיום גבול -- מה צריך לשפץ כדי שלא יורידו נקודות במבחן?


::לפי הגדרת הגבול, יש להראות שלכל <math>\epsilon >0</math> קיים....כך ש- <math>|a_n-a|<\epsilon</math>. אם הראית שהביטוי קטן מ-<math>2\epsilon</math> אז למעשה לא הראית את מה שצריך... שכן מכך ש-
לכן לפי משפט הפונקציה f רציפה במ"ש בקטע.
<math>|a_n-a|<2\epsilon</math> לא נובע ש-
<math>|a_n-a|<\epsilon</math>
עכשיו לא לגמרי ברור לי למה הגבול באפס של הנגזרת סופי..כאילו הקוסינוס של <math>1/x</math> יכול להיות כמעט כל דבר כש הx שואף לאפס..
--[[משתמש:לואי פולב|לואי]] 23:02, 12 בנובמבר 2011 (IST)


:אם לכל אפסילון יש מקום בסדרה החל ממנו ההפרש קטן מפעמיים אפסילון, אזי, עבור חצי אפסילון בוודאי יש מקום בסדרה החל ממנו ההפרש קטן מאפסילון. כלומר, אתה צריך לקחת את המקום בסדרה שייתן בנוסחאות שלך חצי אפסילון בשלב שכיוונת לאפסילון.
: את צודקת, הניסוח שגוי. הנגזרת היא סכום של שתי  פונקציות. הקוסינוס חסומה ולפונקציה השנייה גבולות סופיים ולכן חסומה. סכום חסומות היא חסומה --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


:אני הייתי אומר עכשיו יהי p > 0 (תיקח אות יוונית כמו דלתא, שיראה טוב) ולפי הטענה שהוכחנו בפרט כאשר e = p/2 מתקיים <math>|a_n-a|<2\epsilon = p</math> ומש"ל (אולי אפשר להגיד ש p/2>0 כי מכפלה של שני חיוביים גם היא חיובית או משהו בסגנון)
== מבחן דמה למתמטיקאים... ==


== נושאים לבוחן ==
בקשר ל4 ב כאילו צריך שהנגזרת של הרציונלים תהיה שווה לנגזרת של האי רציונלים וגם שהפונקציה תהיה רציפה בנקודה?
5א אפשר רמז?
:לגבי 4ב - כן. לגבי 5א - איזה אי רציפות יש לפונקציה? תחשוב על פונקציה כזו לדוגמא ותראה מה קורה בה, ואולי תבין... --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::הבנתי שהנקודת אי רציפות הינה מסוג שני שהגבול אינו מוגדר(כאילו לא אינסוף) אבל מה הלאה? נראה לי משהו ברציפות במש כאילו הוכחתי שהנגזרת לא יכולה להיות חסומה מלעיל וגם מלרע אבל לא רק להוכיח שהיא לא יכולה להיות רק מלרע/מלעיל
:::אם הפונקציה קופצת בין שני גבהים שונים היא צריכה גם לעלות וגם לרדת. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::::אז? כאילו אין לי שום רעיון עם זה... כאילו נגזרת חיובית ושלילית?
:::::הנקודות בציר x מתקרבות, ובציר y מתרחקות, מה זה אומר על השיפוע? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
אולי תעלה את התשובה באופן מסודר אני בחיים לא אצליח את זה וגם מלא לא מצליחים את זה...(כאילו עד עכשיו אף אחד לא פתר לי את זה)


מהם הנושאים לבוחן הקרוב זאת אומרת עד איזה תרגיל?
== בקשר למבחן דמה השני שאלה 5 ==
:תרגילים 1,2,3 --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== שאלה שהופיע בתרגיל בית בקורס המקביל בת"א ==
f(x)=0 זה הרכה על א לא? כי הנגזרת היא 0 ומונוטנית וגם הפונקציה מונוטנית
:נכון--<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


תהי <math>\left \{ a_{n} \right \}_{n=1}^{\infty }</math> סדרה מתכנסת. צריך להוכיח שיש לסדרה או מינימום או מקסימום.
== שאלה לגבי המבחן ==
אני אשמח לרמז כלשהו, כי באמת שאין לי רעיון. תודה מראש, אופיר
:נניח ובשלילה שהם לא קיימים. היים ייתכן שהאינפימום והסופרמום שווים? אם הם שונים, האם ייתכן שהם שונים מגבול הסדרה? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


:: הבינותי, רב תודות!
האם יהיה במבחן שאלה של גזירת פונקציות כמו שהיו במבחנים של פרופ זלצמן?


== מועד הבוחן הראשון (תיכוניסטים) ==
לדוגמא: גזור את הפונקציה
<math>\frac{\arctan (e^{sin(x)})}{(log(x))^2}</math>
:לא בטוח שבאופן ישיר, אבל צריך לדעת לגזור כחלק מלופיטל וכדומה --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


בדף של אינפי 1 רשום שהובחן יתקיים ב20/11, ובהנחיות לבוחן רשום שהוא יתקיים ב24/11...
== יש נגזרת כללית בטור טיילור במבחן?ואם כן אפשר לדעת אותה? ==


אפשר לדעת איזה משני התאריכים הוא נכון?
טנקס


:: ההנחיות לבוחן מיועדות לסטודנטים שאינם תיכוניסטים עם תאריכי בחינה אחרים.
== תרגיל מת"א ==


== תרגיל 2 שאלה 5 ב' לעומת 5 ג' ==
איך פותרים את 8א מתרגיל 4?


להבנתי, כן יש איבר משותף לA ול-B במידה וה-sup הוא המקס' של A  והמינימום של Bהוא ה-inf- זה לא מספיק כדי להוכיח ש"יש איבר שנמצא גם ב-A וגם ב-B" שזה מה שביקשו בסעיף ב'?
== שאלה לא סטנדרטית ==
בתשובות מופיעה התשובה כהפרכה. אבל לפי הניסוח נדמה כי מספיר להוכיח כי יש איבר אחד משותף דבר שקורה לדעתי במקרה הנ"ל.
תודה.


:במקרה הפרטי שציינת זה נכון. כאשר מבקשים הוכחה, צריך להוכיח לכל מקרה. באופן ברור, הדוגמא הנגדית מקיימת את הנתון על האינפימום והסופרמום אולם אין איבר משותף לשני הקבוצות. מה הבעייה אם כך? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
אני מעוניין לפרמל ולהוכיח את הטענה שככל שנסתכל על טווח גדול יותר, הפונקציה <math>\sum_{k=1}^{N}sin^2(k)</math> תהיה קרובה יותר לישר <math>f(x)=\frac{1}{2}x</math>.


== הנחיות לבוחן - האם רלוונטי גם למדעי המחשב? ==
דא עקא, אין לי קצה חוט.
 
(בהשראת שאלה משימושי מחשב - בדקתי עד <math>10^6</math>, הטענה נכונה.)
 
== בקשר למועד ג ==
 
האם אפשר לשאול עדיין שאלות פה?
האם הפורום פועל עד למועד ג?
 
תודה
:כן
ענו פה כן באנונימיות
האם זה כן של אחד המתרגלים?
 
:כן
 
 
== שאלה כללית על הטור סיגמא 1/n ==
 
הרי ההגדרה להתכנסות של טור היא ש
אם s1...sn שואפים ל-L
כלומר קיים גבול סופי לסדרת הסכומים החלקיים אז הטור מתכנס ובקשר ל
1/n
 
זה נראה
s1=1/1
s2=1/1+1/2
s3=1/1+1/2+1/3
 
וזה נותן הרגשה שיש התכנסות כי התוספת הולך ונהיית קטנה יותר
עכשיו זה דוגמא למקרה שאני רוצה לבדוק בעזרת האינטאויציה אם טור מתבדר/מתכנס אז למקרים דומים זה אומר שפשוט לא להסתמך על האינטואיציה?
 
תודה
:האינטואיציה שאתה מתאר היא שטורם מתכנס אם ורק אם הסדרה שלו שואפת לאפס. זה לא נכון כמו בדוגמא שהזכרת, כי הסדרה אינו יורדת מספיק מהר/חד/תלולה לאפס --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
== האם יש פירוק יפה לביטוי ==
 
1-sqrt3(x)
במילים אחד פחות שורש שלישי של איקס
תודה
 
 
**
תנסה להתייחס לזה כאל1/3^(x-1)ואז תנסה להמשיך עם הנוסחא a^3-b^3=(a-b)*(a^2+b^2+ab
בהצלחה!
 
== קצת סדר בנוגע לגבולות עליונים ==
 
תהיינה <math>\left \{ a_n \right \},\left \{ b_n \right \}</math> סדרות. האם תמיד מתקיים <math>\overline{\lim}a_nb_n=\overline{\lim }a_n \; \overline{\lim }b_n</math>
, כשהגבולות הנ"ל קיימים?
:לא בהכרח. קח <math>a_n=0; b_n=1</math> לכל n זוגי ו-<math>a_n=1; b_n=0</math> לכל n אי זוגי. המכפלה היא סדרה שקבועה על אפס, לכן הגבול העליון שלה הוא 0, בעוד שעבור כל אחת מהסדרות המקוריות הגבול העליון הוא 1. [[משתמש:gordo6|גל]].
 
::אבל זה נכון אם אחת מהסדרות מתכנסת
 
== הרבה סדר בנוגע לגבולות עליונים ==
 
איך מוכיחים את טענת אופיר?
 
:יש תת סדרה שמתכנסת לגבול העליון, וכל תת סדרה של נסדרה השנייה מתכנסת לגבול. אז המכפלה ביניהם שווה למכפלה בין הגבול (שהוא גם הגבול העליון) של הסדרה המתכנסת לבין הגבול העליון
 
== קבוע בחזקת משהו ששואף ל0 ==
 
האם אפשר להגיד מיד שהביטוי הנ"ל שואף תמיד ל1?
:כן, כי זו פונקציה רציפה --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
== גבול של פונקציית הערך השלם ==
 
היה בבתרגיל 9 למתמטיקאים למצוא את הגבול של
פונקציית הערך השלם של 1/x * כפול x(רגיל) ובפתרון שלכם זה נפתר בעזרת גבולות חד צדדיים בספר של קון השאלה הזו מופיעה לפני הפרק של גבולות חד צדדים ז"א שניתן לפתור את זה בשיטה אחרת קדומה יותר בחומר..?
 
תודה ונ.ב האם אפשר להעלות לכאן תרגילים חיצוניים שלא הצלחתי?
 
 
:אפשר להוכיח לפי ההגדרה הרגילה, ואפשר להעלות תרגילים ממקומות אחרים. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
== טיפול בסיסי בגבולות ==
 
תהי f פונ' ותהי a נקודה כך ש- <math>\lim_{x\rightarrow a}f(x)</math> קיים. תהי g חח"ע.
 
איך מוכיחים (או מפריכים, מה שנראה לי לא סביר) שגם הגבול <math>\lim_{x\rightarrow g(a)}f(g^{-1}(x))</math> קיים, והם שווים?
ההגדרה לא מביאה אותי לכלום.
:g רציפה? כי אם לא זה בוודאי ממש לא נכון. אם היא כן רציפה, החח"ע גוררת מונוטוניות לפי תכונת ערך הביניים, ואז זה בטח לא קשה להוכיח --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::איך המונוטוניות של g  ושל ההופכית שלה עוזרת?
 
== פולינום טיילור ==
 
נתקלתי היום בתרגיל למצוא פולינום אשר מקרב אותי לפונקציה שורש e עכשיו אנו יודעים שצריך לפתח סביב נקודה נוחה כלומר במקרה שלנו לקחנו את הפונקציה שורש x ונקודה נוחה נראית כביכול 1 או 4 אבל זה בלתי אפשרי כמעט היה לפתור עם אחד מאלה ולכן בחרתי את הנקודה 2 שהיא פחות נוחה לחישוב אבל פותרת יותר מהר, והשאלה שלי האם זה לגיטימי שעבור מספרים נוחים לחישוב אני לא יצליח לפתח ועבור מספרים פחות נוחים (אלא אם שורש 2 נחשב נוח) אצליח לפתח?
 
תודה
 
== בקשר לשאלה מהמבחן של מועד א השאלה על פולינום טיילור ==
 
איך הגעת ש i=3 בטווח של x בין 0 ל-1 האם אפשר פירוט?
 
לי יצא 4 יש מצב שיש שם טעות?
 
בכל אופן אם אפשר לקבל פירוט של איך הגעת לזה זה מאוד יעזור
 
תודה


האם ההנחיות לבוחן רלוונטיות גם לתלמידי מדעי המחשב?
== סכום סדרה הנדסית  ==
משער שלא כי עדיין לא פרסמת (ארז) את תרגיל 3 ולא קיבלנו שום תרגיל חזרה
אבל לחלק מהאנשים נפל הלב ;)


:תרימו חזרה את הלב (: כאשר יהיה לכם בוחן אני ארשום למדמ"ח (: --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== תרגיל 4 שאלה 5 ==


עלה לי רעיון להוכחה (שאגב תקף לכל סדרה) הוא מתבסס על תנאי מסויים, שאני רוצה לדעת אם ניתן לכתובו.
השאלה שלי באה לידי ביטוי בהבדל בין התשובות של שאלה 3 א' בקישור: http://math-wiki.com/index.php?title=88-132_אינפי_1_סמסטר_א%27_תשעב/פתרון_מועד_א_מתמטיקאים לבין שאלה 3 בקישור: http://math-wiki.com/images/c/c4/10Infi1Targil6.pdf


אני טוען שאם לקבוצה אין תת סדרה מונוטונית לא יורדת נניח אז החל ממקום מסויים n לכל m>n מתקיים שלכל l>m מתקיים: a(m)>a(l). (כמובן שיש טענה אנלוגית של סדרה לא עולה)
הבנתי את זה ככה:  


'''הרציונאל מאחורי האימרה הזו מאוד ברור:'''
סכום סדרה הנדסית: אם נתון לי שהטור מתכנס ומה שמתבטא בניסוח "חשבו מה הגבול" (כמו בקישור השני) מותר לי להשתמש אוטומטית בנוסחה: a1/1-q בעצם כי ידוע ש q<1
אם לסדרה אין תת סדרה לא יורדת החל ממקום מסויים לכל איבר שנבחר יש רק איברים שקטנים ממנו, אחרת היינו בוחרים אותו (ואם נניח שהיה כזה, והיינו בוחרים אותו והרצף היה נמשך עוד מספר סופי של פעמים, מצאנו את המיקום החדש).
וכאשר אני נשאלת (כמו לדוג' במבחן ממועד א'-קישור ראשון) האם הטור בכלל מתכנס וה-n הרי כל הזמן משתנה. באיזה נוסחא עלי להשתמש? ומדוע?
:אני לא בטוח מה הכוונה בשאלה. כאשר הטור הוא טור הנדסי, כלומר קבוע בחזקת n, בודקים אם הקבוע קטן מאחד או לא (כפי שאמרת). אם הטור אינו הנדסי, משתמשים במבחני התכנסות אחרים... למה צריך להיות קשר בין השניים? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


ועכשיו שתי שאלות:
* במה השתמשת בפתרון של מועד א' שאלה 3 סעיף א'?
א. האם זה באמת נכון? כי זה נשמע לי מאוד הגיוני
ב. אם כן, כמה אני צריך להסביר לפני שאני משתמש בו?


== בקשר לבזיליקום ==


:-אותי זה גם שכנע --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
ארז אתה יודע אולי אם אני  מכין מקרונים אני אמור לשים את הבזיליקום בזמן הבישול של המקרונים עם המים או אחרי פשוט לפזר? תודה

גרסה אחרונה מ־15:31, 24 בנובמבר 2016

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון

ארכיון 1

ארכיון 2

ארכיון 3

ארכיון 4

שאלות

איך מוכיחים שאין טור שמתבדר הכי לאט

כלומר לכל טור חיובי [math]\displaystyle{ \sum a_n }[/math] שמתבדר קיים טור [math]\displaystyle{ \sum b_n }[/math] מתבדר כך ש: [math]\displaystyle{ \frac{b_n}{a_n}\to 0 }[/math]

בדומה למשפט רימן, ניתן "לדחוס" ו"לפזר" את האיברי הסדרה על מנת לקבל סדרה המתכנסת יותר מהר לאפס, שהטור עליה עדיין מתבדר. למשל אפשר את האיבר הראשון לחלק ל-10 ולהפוך אותו לעשרה אברים, את האבר הבא לחלק ב100 ולהפוך אותו למאה אברים וכן הלאה. (זה לא אלגוריתם מלא כמובן) --ארז שיינר

אבל הסדרה [math]\displaystyle{ a_n }[/math] לא בהכרח יורדת

איך מוכיחים את מבחן ראבה

נראה לי לא הוכחנו אותו בכיתה

לא חשבתי על זה האמת, זה פשוט משפט ידוע --ארז שיינר

מבחן

מותר להשתמש במבחן במשפטים ממערכי התרגול/ התרגולים שלא הזכרנו בהרצאה? לגבי המשפטים וההוכחות שבאתר, לא את כולם צריך לדעת נכון? בהרצאה אמרו פחות

זו שאלה למרצים, והמשפטים הם לפי מה שהמרצים אמרו. המשפטים באתר לא קשורים לזה באופן ישיר, פשוט השתדלנו לשים גם את מה שחייבים להוכיח. אני חושב שהדבר היחיד במערכי התרגול שלא מההרצאה הוא מבחן ראבה, לא? --ארז שיינר
יש משפטים על רציפות במ"ש למשל שאם פונקציה רציפה במ"ש בכמה קטעים אז היא רציפה באיחוד שלהם ואם אני לא טועה גם זה שמכך שהנגזרת חסומה
המשפטים האלה מההרצאה עד כמה שאני יודע. --ארז שיינר

בקשר לגבולות של סדרות

אם יש לי סדרה [math]\displaystyle{ A_n }[/math] של חיוביים ומצאתי סדרה [math]\displaystyle{ B_n\gt A_n }[/math] ששואפת לאפס, האם גם [math]\displaystyle{ A_n }[/math] תשאף לאפס אם כן למה?

חוק הסנדויץ'. [math]\displaystyle{ 0\le a_n\le b_n }[/math] --ארז שיינר

חזרה על התרגילים

בתרגיל 3 שאלה 4 סעיפים א,ב,ג

האם יש קשר בין [math]\displaystyle{ a_n }[/math] כלומר אברי הסדרה an1 an2.....

ל a אליו הוא שואף?? תודה

לא, זה פשוט סימון לגבול. אפשר להחליף באות אחרת כמו L --ארז שיינר

גבול החסמים העליונים

האם מכך שידוע שגבול החסמים העליונים הוא מספר ממש נובע שהסדרה חסומה מלעיל?

אני מניח שהכוונה לגבול החסמים העליונים כאשר מחסירים איברים מהסדרה. ברגע שיש חסם עליון ממשי החל משלב מסוים זה אומר שהסדרה חסומה על ידי המקסימום בין החסם העליון הזה לבין כל האיברים שנזרקו --ארז שיינר

פתרונות למבחנים

אם אני אכתוב את הפתרונות של מבחנים שונים עם Latex ב-Word, תעלו את קובץ הוורד של הפתרונות שלי לאתר?

אם אתה כותב LaTex למה שלא תכתוב באתר? פתרונות באתר טובים בהרבה כיוון שקל לתקן אותם --ארז שיינר

אני כותב בעזרת [1] והאתר משום מה תמיד כותב לי עיבוד הנוסחה נכשל (שגיאת לקסינג), דוגמא: [math]\displaystyle{ [a_n=S_{n-1}\Delta^2] }[/math] הבעיה העיקרית היא לרדת שורה, כי אני יכול רק עם שורת הקוד [math]\displaystyle{ a_n=S_{n-1}\Delta^2 }[/math] ללא שימוש בתרגום ל-LaTex, אבל זה עובד רק אם זאת שורה אחת, משום מה זה לא קורא את ה'\\'.

קראתי חלק מ-[2] אבל לא מצאתי איך לתקן את השגיאה הזאת... ⊙_☉ מהו הקוד של ירידת שורה?

(לא ארז) הקוד הוא \\ , אבל כמו שאמרת יש בעיה בו פה.
איך עשית את ה'עיניים' בסמיילי?
תרדו שורה באופן הפשוט ביותר- תפתחו נוסחא חדשה ותכתבו אותה למטה. סה"כ הויקי אינו מסמך לאטך, אלא הוא מאפשר לכתוב נוסחאות בודדות בלאטך. תקנתי למשל את הבעיה שהוצגה לעיל, הסלאש סוגר מרובע היה מיותר. יש כמה הבדלים קטנים מ-LaTex, אבל הם לא משמעותיים כפי שאתם יכולים לראות במערכי התרגול שכולם כתובים בפורמט ויקי. --ארז שיינר

איך מוכיחים שפונקציה קמורה רציפה?

כלומר אם מתקיים [math]\displaystyle{ \forall 0\leq t\leq 1,x,x_0\colon f((1-t)x+t(x_0))\le(1-t)f(x)+tf(x_0) }[/math]

נניח בשלילה כי היא אינה רציפה, לכן לפי היינה יש לה גבולות שונים על סדרות שונות. בעזרתן תוכל לסתור את הקמירות --ארז שיינר
ואם זו אי רציפות סליקה, אזי או שהערך בנקודה גבוה מהגבול וזו סתירה לקמירות, או שהוא נמוך ואז ערכים הקרובים אליו סותרים את הקמירות אם מותחים מהערך בנקודה קו לנקודות באזור --ארז שיינר
אפשר להרחיב ? כלומר, איך מראים את זה בשימוש בנתונים הנ"ל ?
נביט שתי הסדרות השואפות לאותה נקודה, עליהן הפונקציה שואפת למקומות שונים. אחד המקומות גבוה מהשני. תיקח שתי נקודות מהסדרה הנמוכה שיש נקודה מהסדרה השנייה בניהן, אז הפונקציה תהיה מעל לקו העובר בין שתי הנקודות בנקודה השלישית, בסתירה. (תנסה לצייר את זה קודם, זה יעזור)--ארז שיינר

מתי שיעורי החזרה?

תודה

[math]\displaystyle{ \sum x^2 }[/math]

תרגיל 12 שאלה 2 C

הפתרון לא מובן לי. כיצד מתקיים השוויון הבא:

[math]\displaystyle{ \frac{-1}{2\sqrt\frac{x+1}{x-1}}\frac{2}{(x-1)^2}=\frac{(x-1)^2\sqrt{x-1}}{\sqrt{x+1}} }[/math]

יש שם טעות. --מני 18:27, 15 בפברואר 2012 (IST)
תודה רבה

תרגיל 12 שאלה 3 a

שוב הפתרון לא מובן לי. כיצד מתקיים:

[math]\displaystyle{ 2^{x^e}=e^{\log(2^{x^e})} }[/math]

זה לא אמור להיות:

[math]\displaystyle{ 2^{x^e}=e^{\ln(2^{x^e})} }[/math]

הסימון [math]\displaystyle{ \log(x) }[/math] משמש לעתים (וגם בתרגיל זה) תחליף ל- [math]\displaystyle{ \ln }[/math] כלומר ללוגריתם בבסיס [math]\displaystyle{ e }[/math] . לפעמים הוא משמש כלוגריתם בבסיס 10 (לא הפעם). אין טעות בפתרון במקרה זה. --מני 18:32, 15 בפברואר 2012 (IST)
תודה רבה

שיעורי חזרה

1)כדאי לתיכוניסטים להגיע לשיעורי החזרה של הבוגרים?

2)כדאי למי שיגיע ללואי להגיע גם למני?

הבהרה

שיעורי החזרה של לואי ומני מיועדים רק לסטודנטים שלנו ולא לתיכוניסטים (וזאת מכיוון שאנו רוצים למנוע קבוצות גדולות מדי)

יש להגיע רק לאחד מאיתנו, שכן אנחנו פותרים בדיוק את אותם התרגילים. --לואי 14:22, 16 בפברואר 2012 (IST)

אבל זה ממש נוח לנו.. שיעור החזרה שלנו נגמר בדיוק כששלך מתחיל :(

מבנה המבחן

מה מבנה המבחן? כמה זמן הוא?

אריתמטית של גבולות

אם סדרה אחת שואפת לאינסוף והאחרת לאפס, למה שואפת המנה שלהן?

לגבי טורים, האם טור מתבדר פחות טור מתכנס, מתבדר? מה לגבי ההפך?

אם הסדרה ששואפת לאפס שואפת לאפס דרך ערכים חיוביים (מה שהיינו מגדירים בפונקציות שאיפה מימין) אז המנה של השואפת לאפס חלקי זאת ששואפת לאינסוף (אני מתכוון לפלוס אינסוף) תשאף לאפס והמנה ההפוכה תשאף לאינסוף.

אם השאיפה לאפס היא דרך ערכים שליליים אז המנות ישאפו לאפס ולמינוס אינסוף בהתאמה.

יכול להיות מצב שאחת המנות לא תשאף לגבול. למשל: אינסוף חלקי סדרה ששואפת לאפס אבל נניח שמשנה סימן ואז הגבול של האינסוף חלקי הסדרה ששואפת לאפס לא יהיה קיים. כי יהיו שתי תתי סדרות ששואפת לפלוס אינסוף ולמינוס אינסוף.


טור מתבדר פחות מתכנס הוא בהכרח מתבדר. כי נניח בשלילה שהוא מתכנס אם נחבר לטור שחיסרנו שנתון שהוא מתכנס נקבל טור מתכנס בסתירה לכך שהטור שממנו חיסרנו היה מתבדר.

מתכנס פחות מתבדר גם כן מתבדר משיקולים דומים. --מני 13:06, 17 בפברואר 2012 (IST)

ערכים של טורים

האם צריך לזכור למבחן ערכים של טורים מסוימים? (לכמה הטור שווה) אם כן אלו ?(לדוגמה הטור ההרמוני המתחלף)

בפתרון של מבחן משנה שעברות כתוב: קל לראות ש bn+1/bn שואף לאינסוף ולכןbn שואף לאינסוף. למה? מה מייצג הסימן f בחזקת -1. חשבתי שאחד חלקי הפונקציה אבל לפי פתרון המבחן משנה שעברה (שאלה 7) ניראה כאילו גוזרים אותה בתור הפונקציה ההפוכה ל- [math]\displaystyle{ f }[/math]

עדיף לשאול 3 שאלות מנושאים שונים בנפרד ולא תחת נושא אחד. בכל מקרה:

לגבי השאלה הראשונה- לא. אין צורך. לגבי השאלה השלישית- הסימון מייצג את הפונקציה ההפוכה.

שאלה שניה - [math]\displaystyle{ b_n\gt 1 }[/math] ולכן [math]\displaystyle{ b_{n+1}\gt b_{n+1}/b_n }[/math] לכן אם [math]\displaystyle{ \frac{b_{n+1}}{b_n} }[/math] שואף לאינסוף אז כך גם [math]\displaystyle{ b_{n+1} }[/math] (ולכן גם [math]\displaystyle{ b_{n} }[/math]) --מני 20:07, 18 בפברואר 2012 (IST)

נגזרת ורציפות

אם f גזירה פעמיים ב- [math]\displaystyle{ [a,b] }[/math] אז הנגזרת רציפה בקטע הסגור הזה?

כן. באופן כללי גזירות בנקודה גוררת רציפות בנקודה. כמו כן גזירות ימנית (שמאלית) גוררת רציפות מימין (משמאל בהתאמה).--מני 20:09, 18 בפברואר 2012 (IST)

הגדרת החזקה - שיעור ראשון

איך מוכיחים ש [math]\displaystyle{ \sqrt[n]{x^m}=(\sqrt[n]{x})^m }[/math]?

נניח שהם שונים, נעלה את שניהם בחזקת [math]\displaystyle{ n }[/math] ונקבל סתירה, לפי החוק [math]\displaystyle{ (a^n)^m=(a^m)^n }[/math] (אותו קל להוכיח) --ארז שיינר
ציין אם זה נכון: בגלל ש- [math]\displaystyle{ n,m }[/math] הם מספרים טבעיים, נקבל שכל אחד מהאגפים שווה לפי עקרון הכפל הקומבינטורי ל- [math]\displaystyle{ a^{nm} }[/math] , ולכן לאחר ההנחה בשלילה נקבל
[math]\displaystyle{ \sqrt[n]{x^m}\ne(\sqrt[n]{x})^m\Rightarrow x^m\ne((\sqrt[n]{x})^m)^n\Rightarrow x^m\ne((\sqrt[n]{x})^{mn}=((\sqrt[n]{x})^n)^m=x^m }[/math] בסתירה.
כן. וזה נובע מכך שמספרים חיוביים שונים בחזקה חיובית נותנים תוצאה שונה, גם את זה קל להוכיח באינדוקציה - הגדול יהיה גדול יותר. --ארז שיינר

היינה באינסןף

אם [math]\displaystyle{ \lim\limits_{x\to\infty}f(x)=L }[/math] , זה אומר לפי היינה שגם [math]\displaystyle{ \lim\limits_{n\to\infty}f(n^2-n\ln(n))=L }[/math] , נכון?

נכון. --מני 12:58, 19 בפברואר 2012 (IST)

מבחן תשנ"ט שאלה 2ג.

במבחן כתוב [math]\displaystyle{ \frac{1}{\log\left(\frac{1}{n}\right)} }[/math] כאשר n מ-1 עד אינסוף. ב-1 הביטוי לא מוגדר.

נכון. בימים אלה אנחנו חוגגים בר מצווה לטעות. --מני 19:36, 19 בפברואר 2012 (IST)
זאת תשובה ממש משעשעת :) (my work here is done!)

גבולות

אם סדרה [math]\displaystyle{ a_n }[/math] שואפת למספר טבעי ממשי מאפס וסדרת [math]\displaystyle{ b_n }[/math] שואפת לאפס דרך החיוביים. [math]\displaystyle{ \frac{a_n}{b_n} }[/math] שואפת לאינסוף? או שבמנה חייב להיות מספר ממשי ולא משהו ששואף אליו?

מה הכוונה למספר ממשי "מאפס"? כלומר מהצד שקרוב יותר לאפס? בכל מקרה הגבול הזה אכן יהיה אינסוף --ארז שיינר

דוגמה 2 לטורים חיוביים

יש טעות במכנה כשמפתחים את המנה של אברים עוקבים.

מוזמן לתקן. --ארז שיינר
תיקנתי.

[math]\displaystyle{ 0^0 }[/math]

יש דוגמה לגבול מהצורה [math]\displaystyle{ 0^0 }[/math] ששואף ל-2?

[math]\displaystyle{ 2\Big(\frac{1}{n}\Big)^{\frac{1}{n}} }[/math] --ארז שיינר
לא לזה התכוונתי... רציתי שכל הביטוי יהיה רק חזקה ומעריך, כלומר שהוא יהיה מהצורה [math]\displaystyle{ 0^0 }[/math] בלבד. באותה המידה יכולת להוסיף 1.
[math]\displaystyle{ \left(\frac{1}{2^nn}\right)^{-\frac{1}{n}} }[/math] ככה? (: --ארז שיינר
כן, תודה! פשוט להכניס את ה2 לבסיס... ([math]\displaystyle{ \left(\frac{1}{2^n}\right)^{\frac{1}{n}} }[/math] זאת דוגמה יפה יותר, כי אז הביטוי יהיה קבוע למרות הצורה [math]\displaystyle{ 0^0 }[/math])

דוגמה 3 לטורים חיוביים

[[3]] התכוונתם לרשום שלפחות שני שלישים, כנראה. מה שכתוב כרגע נכון רק ל-n ששקול ל0 מודולו 3.

נוסף על כך, ההתקדמות קצת מהירה מדי (עבורי) שם - כדאי להוסיף הסבר מילולי נוסח

"נקטין את כל האברים במכפלה שגדולים מ- [math]\displaystyle{ \frac{n}{3} }[/math] , ומכיון שיש לפחות [math]\displaystyle{ \frac{2}{3}n }[/math] כאלה נקבל ש

[math]\displaystyle{ n!=1\times2\times\cdots\times\left\lfloor\frac{n}{3}\right\rfloor\times\left(\left\lfloor\frac{n}{3}\right\rfloor+1\right)\times\cdots\times n\ge1\times2\times\cdots\times\left\lfloor\frac{n}{3}\right\rfloor\times\left(\frac{n}{3}\right)^{\frac{2}{3}n}\ge\left(\frac{n}{3}\right)^{\frac{2}{3}n} }[/math]

ומכיוון ששני האגפים חיוביים ניתן להעלות בריבוע."

(לא התייחסתם, אז הוספתי.)

דוגמה 5 לטורים חיוביים

הוכחת האינדוקציה נראית לי שגויה. (מה שכתוב שם לא הגיוני)

צריך להיות פשוט [math]\displaystyle{ \frac{b_{n+1}}{b_1}=\frac{b_{n+1}}{b_n}\cdot\frac{b_n}{b_1}\ge\frac{a_{n+1}}{a_n}\frac{b_n}{b_1}\ge\frac{a_{n+1}}{a_n}\frac{a_n}{a_1}=\frac{a_{n+1}}{a_1} }[/math] (א"ש ראשון לפי הנתון, שני לפי הנחת האינדוקציה)

תוקן --ארז שיינר

טעויות במדמ"ח 11 שאלה 4

בסעיף ב' יש טעות טריגונומטרית, בסעיף ד' המעבר האחרון שגוי.

שאלה 1 א במבחן שהיה ב-2008

בשאלה כתוב הגבול של הסדרה [math]\displaystyle{ \lim_{n\to\infty}\bigg[\sqrt{n-\sqrt{n}}-\sqrt{n-\sqrt[3]{n}}\bigg] }[/math]. אפשר רמז לפתרון הגבול הזה?

תכפילו ותחלקו ב- [math]\displaystyle{ \sqrt{n-\sqrt{n}}+\sqrt{n-\sqrt[3]{n}} }[/math] .

--מני 19:17, 21 בפברואר 2012 (IST)

ואז?
מצמצמים את המונה והמכנה בביטוי "הכי גדול" כלומר ב- [math]\displaystyle{ \sqrt{n} }[/math] --מני 20:40, 21 בפברואר 2012 (IST)

פונקציות

איך באופן כללי לענות על שאלות רציפות? עם כל ההגדרות כמו שכתוב במערכי תרגול או שאפשר גם לכתוב איפה שאפשר ב"הגיון"?

לפי הגדרות ולפי משפטים בלבד --ארז שיינר

שאלה

הוכיחו כי הטור [math]\displaystyle{ \sum_{n=1}^\infty a_n }[/math] מתכנס בהחלט אם ורק אם קיים [math]\displaystyle{ C\gt 0 }[/math] כך שלכל סדרה [math]\displaystyle{ \{b_n\}_{n=1}^\infty }[/math] המקיימת כי [math]\displaystyle{ |b_n|\le1 }[/math] לכל [math]\displaystyle{ n\in\N }[/math] וכן [math]\displaystyle{ \lim_{n\to\infty}b_n=0 }[/math] מתקיים כי [math]\displaystyle{ \sum_{n=1}^\infty a_n\cdot b_n\le C }[/math]

נ"ב, אני משום מה לא מצליח לרדת שורה, למרות שאני לוחץ על אנטר. תודה

השאלה הופיע בתרגילי הבית של תשע"א: ראה פתרון של תרגיל 8.
בכיוון השני אתה יכול גם להראות שהסדרה [math]\displaystyle{ a_n }[/math] מקיימת את תנאי קושי, כך שבכל פעם תבחר סדרה מתאימה.

שאלה ממערכי תרגול - פונקציות קושי

היי ארז! מצ"ב מערך תרגול http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%95%D7%AA/%D7%92%D7%91%D7%95%D7%9C_%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94 בשאלת ההוכחה הראשונה של קושי בה צריך להוכיח שהגבול הוא שמונה, לאחר שעשינו מכנה משותף ופישטנו את הביטוי והשאפנו את איקס ל-2 מה מעיד על כך שצריך להגדיל את השבר?ו..איך מוצאים את הדלתא????

אנחנו רוצים להגדיל את כל הביטוי, ולמצוא דלתא שמבטיח שאפילו אחרי שהגדלנו הביטוי יהיה קטן מאפסילון ללא תלות באיקס. על מנת להגדיל את הביטוי אנחנו צריכים להקטין את המכנה. על מנת להקטין את המכנה אנחנו צריכים למצוא מספר גדול מאפס שקטן תמיד מהמכנה. אנחנו בוחרים דלתא שנותן לנו מספר כזה.. --ארז שיינר

בתרגיל להלן שיש לו קישור

לא ברור איך ידעת מאיפה להתחיל .. אפשר הסבר לאיך הגעת לנקודת ההתחלה מה רמז לך לזה? תודה http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A1%D7%93%D7%A8%D7%95%D7%AA/%D7%9E%D7%95%D7%A0%D7%95%D7%98%D7%95%D7%A0%D7%99%D7%95%D7%AA


יש שם כמה תרגילים, הכוונה לראשון? כאשר אנחנו מקבלים סדרה שאנו רוצים להוכיח שהיא מתכנסת יש לנו מספר שיטות. האחת היא להראות מונוטוניות וחסימות, השנייה היא למצוא נוסחא מפורשת (קשה במקרה זה) ואחרת היא להראות תנאי קושי. אין דרך לדעת בוודאות מראש איזו שיטה עובדת, יש לנסות את כולם עד אשר מצליחים לפתור את התרגיל. --ארז שיינר
סורי שלא ציינתי זאת התכוונתי לתרגיל השני עם a1=אלפא b1=ביטא נ.ב- "לא קונה בלי תימני"
כמו בתרגילים אחרים, העצה היא להתחיל לרשום כמה איברים ראשונים של הסדרה. מהר מאד רואים שאחת עולה, השנייה יורדת, והשנייה גדולה מהראשונה. אחרי שרואים את זה ניגשים להוכיח במרץ --ארז שיינר

היינה- שאלה קטנטנה

היי, בקובץ המצורף http://math-wiki.com/images/7/7b/10Infi1Targil8Sol.pdf בשאלה 3. השאלה פשוטה עקרונית. אבל מבחינת ההוכחה יכולתי לומר שמתקיים לכל סדרה לקחת בפרט סדרה כלשהי (נגיד 1 חלקי n ) ששואפת ל-0 להפעיל עליה את f ולומר שמדובר על מכפלה של אפסית בחסום ולכן הגבול אפס. אמת?  

לא מספיק להוכיח לסדרה מסויימת, חייבים להוכיח שזה מתקיים לכל סדרה. אחרת יכול להיות שעל הנקודות של 1 חלקי n קורה משהו אחד, ועל נקודות אחרות בסביבת אפס קורה משהו אחר --ארז שיינר

הוכחה של גבול

היי, השאלה: הוכח שlimcosx=1 כאשר x שואף ל-0. בוחרים סדרה כלשהי שמתכנסת ל-0 ואז מה ניתן לעשות? תודה

תלוי מאיפה השאלה בחומר. בהרצאה הוכחנו שקוסינוס וסינוס הן פונקציות רציפות, זה נובע ישירות מהגדרת הרציפות --ארז שיינר

לא הצלחתי שאלה במבחן מסוים...

http://www.studenteen.org/inf1_exam_zalcman_2009_a.pdf תרגיל 2 ג הוכחתי שזה מתכנס בתנאי לפי דריכלה אבל אין לי רעיון עם מתכנס בהחלט...

זה לא מתכנס בהחלט. בלי הקוסינוס זה נכון לפי מבחן העיבוי, עם הקוסינוס ניתן להוכיח שקוסינוס בערך מוחלט גדול מקבוע מסויים לפחות כל פעם שנייה. הרי אם הוא קרוב לאפס, אחרי אחד הוא יתרחק ממנו. לכן זה גדול מקבוע כפול טור מתבדר ולכן מתבדר. --ארז שיינר
לא הבנתי כל כך איך אני מוכיח שזה מתכנס בתנאי...
מבחן דיריכליי, הוא רשום במפורט במערכי תרגול. אבל להבנתי אסור לכם להשתמש בזה במבחן, וכנראה לא יהיה תרגיל כזה במבחן. --ארז שיינר

לא הצלחתי לסווג את הנקודות קיצון

http://u.cs.biu.ac.il/~sheinee/tests/math/88132/4ef1a2e00a144.pdf שאלה 6 א את 0 הצלחתח בעזרת לופיטל אבל לא הצלחתי את PI/2+PK

מדובר בסוג שני. מספיק להוכיח שהגבול השמאלי ב [math]\displaystyle{ \frac{\pi}{2} }[/math] אינו סופי. (אם הוא אינסופי או לא קיים בכל מקרה מדובר בסוג שני) וזה משליך גם על כל הנקודות האחרות. מספיק להוכיח שהגבול השמאלי של המונה אינו סופי. (למה?) נניח בשלילה שהגבול סופי אזי בהכרח הגבול בין 1 למינוס 1 (נובע מערכי סינוס). נניח שהגבול הוא a. כעת ניתן להפעיל arcsin על שני האפים שהיא פונקציה רציפה בתחום הגדרתה (משתמשים כאן ברעיון של שאלה 2 מתרגיל 10) וכמו כן לזכור ש arcsinsin t=t ונקבל ש

[math]\displaystyle{ \lim_{x\to (\frac{\pi}{2})^-}tan x=arcsin a }[/math] אבל arcsin a הוא מספר סופי ומצד שני ידוע ש [math]\displaystyle{ \lim_{x\to (\frac{\pi}{2})^-}tan x=\infty }[/math] וזו סתירה להנחה.--מני 01:08, 8 באפריל 2012 (IDT)

מבחן נוסף...

http://www.studenteen.org/ חשבון אינפי 1 בחינות של שמואל קפלן קובץ 2 תרגיל 1 א

אפשר להוכיח באינדוקציה ש[math]\displaystyle{ 2^{n}\gt n^{3} }[/math] החל מn מסויים, מכאן תמשיך!

אופס קודם התבלבלתי תרגיל 1 ג

ניתן להיפטר מarcsin ע"י הצבת [math]\displaystyle{ x=sint }[/math] ואז מקבלים גבול כש [math]\displaystyle{ t }[/math] שואף לאפס

מקבלים גבול מהצורה של 1 בחזקת אינסוף. אותו אפשר לפתור ע"י הטלת ln (בסוף צריך להפעיל e בחזקת התוצאה הזו כדי לקבל את הגבול המקורי) אחרי השלב של הln פותרים בעזרת לופיטל. --מני 19:36, 8 באפריל 2012 (IDT)

אפשר רמז?

אם פונציה f 1.רציפה על [a,b] , 2. קיימת נגזרת סופית בקטע ..(למיטב הבנתי הנגזרת חסומה..) 3. הפונקציה לא לינארית..(במה בדיוק זה עוזר לי?) צ"ל שקיימת לפחות נק' אחת שבה הנגזרת יותר גדולה מהנגזרת בין a לb לפי לגראנג'..(כאילו

f(b) -f(a)/b-a< f'(c)
ברגע שהפונקציה לא ליניארית אז לא יתכן ש [math]\displaystyle{ f(x)=f(a)+(x-a)\frac{f(b)-f(a)}{b-a} }[/math]

לכל x. כלומר בהכרח קיים [math]\displaystyle{ a\lt x\lt b }[/math] כך שבמקום שוויון יש אי שוויון. אם למשל [math]\displaystyle{ f(x) }[/math] גדול מאגף ימין אז ניתן להסתכל בביטוי [math]\displaystyle{ \frac{f(x)-f(a)}{x-a} }[/math] ולהסיק ש... אם אי השוויון הוא בכיוון השני אז ניתן להתבונן ב [math]\displaystyle{ \frac{f(b)-f(x)}{b-x} }[/math] ולהסיק הדרוש. --מני 20:08, 8 באפריל 2012 (IDT)


תודה :-)

מבחן השורש של קושי לטורים חיוביים.

בהוכחת מבחן השורש לטורים חיוביים נעזרים במשפט עזר על אפייון הלימסופ, בו נאמר פחות או יותר- תהי סדרה כלשהי, אם קיים מספר כלשהו אשר גדול מהלימסופ של הסדרה, אזי קיימים לכל היותר מספר סופי של איברים..כמו כן קיים ניסוח גם למקרה ההפוך. השאלה שלי היא, האם אין צורך לדרוש את הקיום הזה לכל סדרה חסומה?

לא. זו דוגמא טובה לתנאי שמתקיים באופן ריק. אם למשל הסדרה לא חסומה מלעיל אז הגרירה: "אם קיים מספר כלשהו אשר גדול מהלימסופ של הסדרה, אזי קיימים לכל היותר מספר סופי של איברים.." היא בהכרח פסוק אמת כי הרישא היא שקרית (הלימסופ הוא אינסוף ולכן לא קיים מספר הגדול ממנו) ולכן לא משנה מה תוצאת הגרירה, הפסוק יהיה פסוק אמת. --מני 11:25, 9 באפריל 2012 (IDT)

שאלה למבחן

אפשר להשתמש בעובדה שהטור [math]\displaystyle{ \forall \alpha \in (-1,0]: \sum_{n=1}^{\infty} n^{\alpha} }[/math] מתבדר

ושהטור [math]\displaystyle{ \forall \alpha \in (-\infty ,-1]: \sum_{n=1}^{\infty} n^{\alpha} }[/math] מתכנס? או שצריך להוכיח כל פעם?

רק תיקון קל, הטור מתכנס אם [math]\displaystyle{ \alpha\lt -1 }[/math].
תיקנתי...
עקרונית כן, תשאל בזמן המבחן. אם אומרים שלא, אז תוכיח באמצעות מבחן העיבוי (קלי קלות) --ארז שיינר
קל לראות ש... - בודאי!
נו לאן הגענו ששואלים שאלה ועונים עליה עם מימי ?

תודה בכל מקרה ארז :-)

רציפות במש

x*logx היא רציפה במש? נראה לי שלא אבל לא הצלחתי למצוא סדרות שיפריכו לי

יש את הדוגמא הזו במערכי התרגול בנושא רציפות במ"ש. --מני 15:18, 10 באפריל 2012 (IDT)

האם סביר שיהיה שאלה על נקודות הצטברות במבחן?

ואם כן... מה עושים עם זה : תהי A קבוצת נקודות ממשיות. נקרא נקודה פנימית של A לנקודה a שייכת ל A עבורה יש סביבת אפסילון מוכלת(עבור אפסילון>0 כלשהו) המוכלת כולה ב- A. הוכיחו כי אם B היא קבוצה המכילה את כל נקודות ההצטברות שלה, אזי הקבוצה המשלימה שלB (שהיא R/B ) אינה מכילה אף נקודת הצטברות שאינה נקודה פנימית של R/B .

אני בספק אם תהיה שאלה בנושא. אבל, בהנחה שנקודות הצטברות נלמדו בהרצאה אני מניח שהסיכוי הוא לא אפס. איך אפשר להוכיח? ניתן להוכיח אפילו יותר- שבתנאי השאלה R\B אינה מכילה אף נקודה שאינה נקודה פנימית של R\B (בלי קשר אם הנקודה היא נק' הצטברות). נניח בשלילה שקיימת נקודה x השייכת לR\B וגם שx אינה נק' פנימית של R\B.

x אינה נק' פנימית של R\B ולכן משלילת ההגדרה של נק' פנימית נקבל שכל סביבת אפסילון של x לא מוכלת ב R\B. זה שקול לכך שהחיתוך של כל סביבת אפסילון של x עם B אינו ריק. כמו כן מכיון שx שייכת ל R\B אז לכל אפסילון > 0 בחיתוך הנ"ל שאינו ריק קיימת נקודה השונה מx. לכן עפ"י ההגדרה (או אחת השקולות) x נקודת הצטברות של B אבל הקבוצה B מכילה את כל נקודות ההצטברות שלה, ומכאן x שייכת לB בסתירה לכך ש x שייכת לR\B.--מני 15:32, 10 באפריל 2012 (IDT)

רציפות במש ועוד שאלה...

להוכיח או להפריך שxcosx רציפה במש(אני די בטוח שזה הפרכה) ולהוכיח ש:הטור an מתכנס בהחלט אם ורק אם לכל סדרה bn המתכנסת ל0 הטור anbn מתכנס הצלחתי את הכיוון של אם an מתכנס בהחלט אבל לא הצלחתי את השני טנקס!!! וגם x*sin(1/sinx) למצוא נקודות אי רציפות:מצאתי שx=pi*k זה נקודות האי רציפות ומצאתי ש0 זה נקודת אי רציות סליקה אבל בקשר לשאר הנקודות אני לא יודע


לגבי [math]\displaystyle{ xcosx }[/math] אתה בוחר שתי סדרות [math]\displaystyle{ x_n , y_n }[/math] כך שהפרשן מתכנס ל-0, אבל [math]\displaystyle{ f(x_n)-f(y_n) }[/math] לא מתכנס ל-0.

לגבי הנקודות אי רציפות אני מזכיר שאם אחד הגבולות החד צדדים הוא אינסוף, זה נקודת אי רציפות מהסוג השני. אם שני הגבולות החד צדדיים שווים, אבל בנקודה הזאת הפוקנציה לא מוגדרת, זה נקודת אי רציפות סליקה.

לגבי הטורים: מניחים שלכל סדרה [math]\displaystyle{ b_n }[/math] שמתכנסת ל-0 הטור [math]\displaystyle{ \sum a_n b_n }[/math] מתכנס, ואז אתה בוחר בחכמה את הסדרה [math]\displaystyle{ b_n }[/math] בצורה כזו שאתה מגיע ישירות מהטור [math]\displaystyle{ \sum a_n b_n }[/math] לטור [math]\displaystyle{ \sum |a_n| }[/math] . מקווה שעזרתי :-) אפשר כאילו עזרה יותר ממה שברור מאליו? אני ניסיתי איזה שעה ומשהו את זה ולא הצלחתי..

יש תשובות לכל השאלות האלה במערכי התרגול ובפתרונות תרגיל הבית מהשנה ומשנה שעברה. לגבי השאלה האחרונה, מחשבים גבולות חד צדדיים בעזרת לופיטל --ארז שיינר

מועד א' מדמ"ח שאלה 4 א'

בפתרון רשמתם ש: כיוון שגבולותיה של הנגזרת באפס ובאינסוף סופיים והיא רציפה בכל נקודה בקטע, היא חסומה בקטע.

לכן לפי משפט הפונקציה f רציפה במ"ש בקטע.

עכשיו לא לגמרי ברור לי למה הגבול באפס של הנגזרת סופי..כאילו הקוסינוס של [math]\displaystyle{ 1/x }[/math] יכול להיות כמעט כל דבר כש הx שואף לאפס..

את צודקת, הניסוח שגוי. הנגזרת היא סכום של שתי פונקציות. הקוסינוס חסומה ולפונקציה השנייה גבולות סופיים ולכן חסומה. סכום חסומות היא חסומה --ארז שיינר

מבחן דמה למתמטיקאים...

בקשר ל4 ב כאילו צריך שהנגזרת של הרציונלים תהיה שווה לנגזרת של האי רציונלים וגם שהפונקציה תהיה רציפה בנקודה? 5א אפשר רמז?

לגבי 4ב - כן. לגבי 5א - איזה אי רציפות יש לפונקציה? תחשוב על פונקציה כזו לדוגמא ותראה מה קורה בה, ואולי תבין... --ארז שיינר
הבנתי שהנקודת אי רציפות הינה מסוג שני שהגבול אינו מוגדר(כאילו לא אינסוף) אבל מה הלאה? נראה לי משהו ברציפות במש כאילו הוכחתי שהנגזרת לא יכולה להיות חסומה מלעיל וגם מלרע אבל לא רק להוכיח שהיא לא יכולה להיות רק מלרע/מלעיל
אם הפונקציה קופצת בין שני גבהים שונים היא צריכה גם לעלות וגם לרדת. --ארז שיינר
אז? כאילו אין לי שום רעיון עם זה... כאילו נגזרת חיובית ושלילית?
הנקודות בציר x מתקרבות, ובציר y מתרחקות, מה זה אומר על השיפוע? --ארז שיינר

אולי תעלה את התשובה באופן מסודר אני בחיים לא אצליח את זה וגם מלא לא מצליחים את זה...(כאילו עד עכשיו אף אחד לא פתר לי את זה)

בקשר למבחן דמה השני שאלה 5

f(x)=0 זה הרכה על א לא? כי הנגזרת היא 0 ומונוטנית וגם הפונקציה מונוטנית

נכון--ארז שיינר

שאלה לגבי המבחן

האם יהיה במבחן שאלה של גזירת פונקציות כמו שהיו במבחנים של פרופ זלצמן?

לדוגמא: גזור את הפונקציה [math]\displaystyle{ \frac{\arctan (e^{sin(x)})}{(log(x))^2} }[/math]

לא בטוח שבאופן ישיר, אבל צריך לדעת לגזור כחלק מלופיטל וכדומה --ארז שיינר

יש נגזרת כללית בטור טיילור במבחן?ואם כן אפשר לדעת אותה?

טנקס

תרגיל מת"א

איך פותרים את 8א מתרגיל 4?

שאלה לא סטנדרטית

אני מעוניין לפרמל ולהוכיח את הטענה שככל שנסתכל על טווח גדול יותר, הפונקציה [math]\displaystyle{ \sum_{k=1}^{N}sin^2(k) }[/math] תהיה קרובה יותר לישר [math]\displaystyle{ f(x)=\frac{1}{2}x }[/math].

דא עקא, אין לי קצה חוט.

(בהשראת שאלה משימושי מחשב - בדקתי עד [math]\displaystyle{ 10^6 }[/math], הטענה נכונה.)

בקשר למועד ג

האם אפשר לשאול עדיין שאלות פה? האם הפורום פועל עד למועד ג?

תודה

כן

ענו פה כן באנונימיות האם זה כן של אחד המתרגלים?

כן


שאלה כללית על הטור סיגמא 1/n

הרי ההגדרה להתכנסות של טור היא ש אם s1...sn שואפים ל-L כלומר קיים גבול סופי לסדרת הסכומים החלקיים אז הטור מתכנס ובקשר ל 1/n

זה נראה s1=1/1 s2=1/1+1/2 s3=1/1+1/2+1/3

וזה נותן הרגשה שיש התכנסות כי התוספת הולך ונהיית קטנה יותר עכשיו זה דוגמא למקרה שאני רוצה לבדוק בעזרת האינטאויציה אם טור מתבדר/מתכנס אז למקרים דומים זה אומר שפשוט לא להסתמך על האינטואיציה?

תודה

האינטואיציה שאתה מתאר היא שטורם מתכנס אם ורק אם הסדרה שלו שואפת לאפס. זה לא נכון כמו בדוגמא שהזכרת, כי הסדרה אינו יורדת מספיק מהר/חד/תלולה לאפס --ארז שיינר

האם יש פירוק יפה לביטוי

1-sqrt3(x) במילים אחד פחות שורש שלישי של איקס תודה


תנסה להתייחס לזה כאל1/3^(x-1)ואז תנסה להמשיך עם הנוסחא a^3-b^3=(a-b)*(a^2+b^2+ab בהצלחה!

קצת סדר בנוגע לגבולות עליונים

תהיינה [math]\displaystyle{ \left \{ a_n \right \},\left \{ b_n \right \} }[/math] סדרות. האם תמיד מתקיים [math]\displaystyle{ \overline{\lim}a_nb_n=\overline{\lim }a_n \; \overline{\lim }b_n }[/math] , כשהגבולות הנ"ל קיימים?

לא בהכרח. קח [math]\displaystyle{ a_n=0; b_n=1 }[/math] לכל n זוגי ו-[math]\displaystyle{ a_n=1; b_n=0 }[/math] לכל n אי זוגי. המכפלה היא סדרה שקבועה על אפס, לכן הגבול העליון שלה הוא 0, בעוד שעבור כל אחת מהסדרות המקוריות הגבול העליון הוא 1. גל.
אבל זה נכון אם אחת מהסדרות מתכנסת

הרבה סדר בנוגע לגבולות עליונים

איך מוכיחים את טענת אופיר?

יש תת סדרה שמתכנסת לגבול העליון, וכל תת סדרה של נסדרה השנייה מתכנסת לגבול. אז המכפלה ביניהם שווה למכפלה בין הגבול (שהוא גם הגבול העליון) של הסדרה המתכנסת לבין הגבול העליון

קבוע בחזקת משהו ששואף ל0

האם אפשר להגיד מיד שהביטוי הנ"ל שואף תמיד ל1?

כן, כי זו פונקציה רציפה --ארז שיינר

גבול של פונקציית הערך השלם

היה בבתרגיל 9 למתמטיקאים למצוא את הגבול של פונקציית הערך השלם של 1/x * כפול x(רגיל) ובפתרון שלכם זה נפתר בעזרת גבולות חד צדדיים בספר של קון השאלה הזו מופיעה לפני הפרק של גבולות חד צדדים ז"א שניתן לפתור את זה בשיטה אחרת קדומה יותר בחומר..?

תודה ונ.ב האם אפשר להעלות לכאן תרגילים חיצוניים שלא הצלחתי?


אפשר להוכיח לפי ההגדרה הרגילה, ואפשר להעלות תרגילים ממקומות אחרים. --ארז שיינר

טיפול בסיסי בגבולות

תהי f פונ' ותהי a נקודה כך ש- [math]\displaystyle{ \lim_{x\rightarrow a}f(x) }[/math] קיים. תהי g חח"ע.

איך מוכיחים (או מפריכים, מה שנראה לי לא סביר) שגם הגבול [math]\displaystyle{ \lim_{x\rightarrow g(a)}f(g^{-1}(x)) }[/math] קיים, והם שווים? ההגדרה לא מביאה אותי לכלום.

g רציפה? כי אם לא זה בוודאי ממש לא נכון. אם היא כן רציפה, החח"ע גוררת מונוטוניות לפי תכונת ערך הביניים, ואז זה בטח לא קשה להוכיח --ארז שיינר
איך המונוטוניות של g ושל ההופכית שלה עוזרת?

פולינום טיילור

נתקלתי היום בתרגיל למצוא פולינום אשר מקרב אותי לפונקציה שורש e עכשיו אנו יודעים שצריך לפתח סביב נקודה נוחה כלומר במקרה שלנו לקחנו את הפונקציה שורש x ונקודה נוחה נראית כביכול 1 או 4 אבל זה בלתי אפשרי כמעט היה לפתור עם אחד מאלה ולכן בחרתי את הנקודה 2 שהיא פחות נוחה לחישוב אבל פותרת יותר מהר, והשאלה שלי האם זה לגיטימי שעבור מספרים נוחים לחישוב אני לא יצליח לפתח ועבור מספרים פחות נוחים (אלא אם שורש 2 נחשב נוח) אצליח לפתח?

תודה

בקשר לשאלה מהמבחן של מועד א השאלה על פולינום טיילור

איך הגעת ש i=3 בטווח של x בין 0 ל-1 האם אפשר פירוט?

לי יצא 4 יש מצב שיש שם טעות?

בכל אופן אם אפשר לקבל פירוט של איך הגעת לזה זה מאוד יעזור

תודה

סכום סדרה הנדסית

השאלה שלי באה לידי ביטוי בהבדל בין התשובות של שאלה 3 א' בקישור: http://math-wiki.com/index.php?title=88-132_אינפי_1_סמסטר_א%27_תשעב/פתרון_מועד_א_מתמטיקאים לבין שאלה 3 בקישור: http://math-wiki.com/images/c/c4/10Infi1Targil6.pdf

הבנתי את זה ככה:

סכום סדרה הנדסית: אם נתון לי שהטור מתכנס ומה שמתבטא בניסוח "חשבו מה הגבול" (כמו בקישור השני) מותר לי להשתמש אוטומטית בנוסחה: a1/1-q בעצם כי ידוע ש q<1 וכאשר אני נשאלת (כמו לדוג' במבחן ממועד א'-קישור ראשון) האם הטור בכלל מתכנס וה-n הרי כל הזמן משתנה. באיזה נוסחא עלי להשתמש? ומדוע?

אני לא בטוח מה הכוונה בשאלה. כאשר הטור הוא טור הנדסי, כלומר קבוע בחזקת n, בודקים אם הקבוע קטן מאחד או לא (כפי שאמרת). אם הטור אינו הנדסי, משתמשים במבחני התכנסות אחרים... למה צריך להיות קשר בין השניים? --ארז שיינר
  • במה השתמשת בפתרון של מועד א' שאלה 3 סעיף א'?

בקשר לבזיליקום

ארז אתה יודע אולי אם אני מכין מקרונים אני אמור לשים את הבזיליקום בזמן הבישול של המקרונים עם המים או אחרי פשוט לפזר? תודה