שיחה:88-132 אינפי 1 סמסטר א' תשעב: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
 
(491 גרסאות ביניים של 45 משתמשים אינן מוצגות)
שורה 4: שורה 4:


[[שיחה:88-132 אינפי 1 סמסטר א' תשעב/ארכיון 1| ארכיון 1]]
[[שיחה:88-132 אינפי 1 סמסטר א' תשעב/ארכיון 1| ארכיון 1]]
[[שיחה:88-132 אינפי 1 סמסטר א' תשעב/ארכיון 2| ארכיון 2]]
[[שיחה:88-132 אינפי 1 סמסטר א' תשעב/ארכיון 3| ארכיון 3]]
[[שיחה:88-132 אינפי 1 סמסטר א' תשעב/ארכיון 4| ארכיון 4]]


=שאלות=
=שאלות=
==איך מוכיחים שאין טור שמתבדר הכי לאט==
כלומר לכל טור חיובי <math>\sum a_n</math> שמתבדר קיים טור <math>\sum b_n</math> מתבדר כך ש: <math>\frac{b_n}{a_n}\to 0</math>
:בדומה למשפט רימן, ניתן "לדחוס" ו"לפזר" את האיברי הסדרה על מנת לקבל סדרה המתכנסת יותר מהר לאפס, שהטור עליה עדיין מתבדר. למשל אפשר את האיבר הראשון לחלק ל-10 ולהפוך אותו לעשרה אברים, את האבר הבא לחלק ב100 ולהפוך אותו למאה אברים וכן הלאה. (זה לא אלגוריתם מלא כמובן) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
אבל הסדרה <math>a_n</math> לא בהכרח יורדת


== תרגיל שהוכח במערכי תרגול - גבולות חלקיים ==
==איך מוכיחים את מבחן ראבה==
נראה לי לא הוכחנו אותו בכיתה
:לא חשבתי על זה האמת, זה פשוט משפט ידוע --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


במערכי תרגול יש תרגיל (לו מצורפת הוכחה): מצא סדרה שקבוצת הגבולות החלקיים שלה מהווה את כל המספרים הממשיים.
==מבחן==
העניין הוא שמכיוון שאת איברי סדרה ניתן לשים בקבוצה ולכן עוצמת הקבוצה היא אלף אפס (סדרה היא בת מניה) ואם יוצרים קבוצה של גבולות חלקיים של סדרה, ובקבוצה הזו אמורים להיות כל המספרים הממשיים אז עוצמת הקבוצה היא אלף, משמע יש בה יותר איברים מאשר בסדרה. זה לא מתחבר לי. (אבקש שתסבירו לי את הטעות שלי ולא את ההוכחה)
מותר להשתמש במבחן במשפטים ממערכי התרגול/ התרגולים שלא הזכרנו בהרצאה?
לגבי המשפטים וההוכחות שבאתר, לא את כולם צריך לדעת נכון? בהרצאה אמרו פחות
:זו שאלה למרצים, והמשפטים הם לפי מה שהמרצים אמרו. המשפטים באתר לא קשורים לזה באופן ישיר, פשוט השתדלנו לשים גם את מה שחייבים להוכיח. אני חושב שהדבר היחיד במערכי התרגול שלא מההרצאה הוא מבחן ראבה, לא? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::יש משפטים על רציפות במ"ש למשל שאם פונקציה רציפה במ"ש בכמה קטעים אז היא רציפה באיחוד שלהם ואם אני לא טועה גם זה שמכך שהנגזרת חסומה


:::המשפטים האלה מההרצאה עד כמה שאני יודע. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== בקשר לגבולות חלקיים ==
==בקשר לגבולות של סדרות==
אם יש לי סדרה <math>A_n</math> של חיוביים ומצאתי סדרה <math>B_n>A_n</math> ששואפת לאפס, האם גם <math>A_n</math> תשאף לאפס אם כן למה?


אחרי שמצאתי גבולות חלקיים ע"י הצבת n זוגי וn אי זוגי איך אני מוכיח שהם הגבולות החלקיים היחידים? הדוגמא בכתה של בחירת סביבה כללית של גבול ולהראות שיש שם מספר סופי של איברים לא ברורה לי אם אפשר הסבר נוסף ודוגמא טובה  תודה
:חוק הסנדויץ'. <math>0\le a_n\le b_n</math> --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


יהי M גבול חלקי של הסדרה , אזי קיימת תת-סדרה <math>{a_{n_{k}}}</math> של הסדרה המקורית, המתכנסת אליו. היא בהכרח מכילה כמות אינסופית של איברים במקומות זוגיים, או אינסוף איברים במקומות האי זוגיים [אחרת בתת סדרה יש מספר סופי של איברים. סתירה]. ניקח את תת- תת-הסדרה <math>{a_{n_{k_{m}}}}</math> של אותם אינסוף איברים. סדרה זו היא גם תת סדרה של האיברים במקומות האי זוגיים\זוגיים ולכן מתכנסת לגבול L שהוא הגבול של האיברים במקומות האי זוגיים\זוגיים. אבל בגלל ש <math>{a_{n_{k}}}</math> מתכנסת, אז כל תת סדרה שלה מתכנסת לאותו הגבול M. קיבלנו M=L [כי הגבול של <math>{a_{n_{k_{m}}}}</math> מוגדר היטב]
==חזרה על התרגילים==
בתרגיל 3
שאלה 4 סעיפים א,ב,ג


== תאריכי הבחנים ==
האם יש קשר בין <math>a_n</math> כלומר אברי הסדרה an1 an2.....
 
ל a אליו הוא שואף??
תודה


למחלקת מתמיקה באוניברסיטת בר אין שלום
:לא, זה פשוט סימון לגבול. אפשר להחליף באות אחרת כמו L --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
יש משהו שמאוד מאוד מפריע לי בהתלנות ואני מרגיש שאני מוכרח לספר, גם לא תוכלו לעשות שום דבר בנידון ואני מאוד מאוד מקווה שתוכלו:
אני חושב שתאריכי הבחנים הם פשוט בדיחה.
בחנים לתיכוניסטים כשיש חופש מהלימודים?!?!? סליחה על המילה אבל זו פשוט שערוריה !!
בזמן החופש מהלימודים אנחנו רוצים לצאת, להנות, לטייל עם המשפחה ועם תנועות הנוער, לטוס , ובעיקר לנוח מהלימודים.אני חושב
שזה ממש לא הזמן המתאים לבוחן כי זה גורם לנו להפסיד המון המווון המון.
אל תשכחו שלמרות שאנחנו סטודנטים אנחנו גם ילדים !!!
בתודה, ובתקווה לקבלת מענה.


:אין חופש מהלימודים בחנוכה באוניברסיטה (הלימודים מפסיקים אחרי ארבע). --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
==גבול החסמים העליונים==
האם מכך שידוע שגבול החסמים העליונים הוא מספר ממש נובע שהסדרה חסומה מלעיל?
:אני מניח שהכוונה לגבול החסמים העליונים כאשר מחסירים איברים מהסדרה. ברגע שיש חסם עליון ממשי החל משלב מסוים זה אומר שהסדרה חסומה על ידי המקסימום בין החסם העליון הזה לבין כל האיברים שנזרקו --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


נכון אבל יש חופש מהלימודים !! ואנחנו רוצים לנצל אותו בלחפוש ולנוח ולטייל ולא בללמוד לבחנים או לעשות אותם
==פתרונות למבחנים==
בבקשה תבינו אותנו !!!!!!!!!!!!!! תדחו את הבחנים לאחחרי החופש ! לשבוע אחריו! במילא אנחנו מותרים על מלא דברים ביומיום..אז גם בחנוכה ?!
אם אני אכתוב את הפתרונות של מבחנים שונים עם Latex ב-Word, תעלו את קובץ הוורד של הפתרונות שלי לאתר?
אני חוזר, למרות שאנחנו סטודנטים אנחנו ילדים וכמה שאנחנו רוצים תתואר הזה אנחנו רוצים גם לחיווות !!
:אם אתה כותב LaTex למה שלא תכתוב באתר? פתרונות באתר טובים בהרבה כיוון שקל לתקן אותם --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


ובנוסף :
אני כותב בעזרת [http://www.codecogs.com/latex/eqneditor.php] והאתר משום מה תמיד כותב לי '''עיבוד הנוסחה נכשל (שגיאת לקסינג)''', דוגמא:
<math>[a_n=S_{n-1}\Delta^2]</math>
הבעיה העיקרית היא לרדת שורה, כי אני יכול רק עם שורת הקוד <math>a_n=S_{n-1}\Delta^2</math> ללא שימוש בתרגום ל-LaTex, אבל זה עובד רק אם זאת שורה אחת, משום מה זה לא קורא את ה'\\'.


מה הכוונה הוכח במפורש - עפ"י הגדרה?  
קראתי חלק מ-[http://en.wikipedia.org/wiki/Help:Displaying_a_formula] אבל לא מצאתי איך לתקן את השגיאה הזאת... ⊙_☉
האם אני יכול להוכיח שהסדרה אינה סדרת קושי (ולכן היא לא מתכנסת במובן הצר) + מונוטנית עולה = שואפת לאינסוף?
מהו הקוד של ירידת שורה?
: (לא ארז) הקוד הוא \\ , אבל כמו שאמרת יש בעיה בו פה.
: איך עשית את ה'עיניים' בסמיילי?


:באיזו שאלה? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::תרדו שורה באופן הפשוט ביותר- תפתחו נוסחא חדשה ותכתבו אותה למטה. סה"כ הויקי אינו מסמך לאטך, אלא הוא מאפשר לכתוב נוסחאות בודדות בלאטך. תקנתי למשל את הבעיה שהוצגה לעיל, הסלאש סוגר מרובע היה מיותר. יש כמה הבדלים קטנים מ-LaTex, אבל הם לא משמעותיים כפי שאתם יכולים לראות במערכי התרגול שכולם כתובים בפורמט ויקי. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== הרחבה לאריתמטיקה ==
==איך מוכיחים שפונקציה קמורה רציפה?==
כלומר אם מתקיים <math>\forall 0\leq t\leq 1,x,x_0\colon f((1-t)x+t(x_0))\le(1-t)f(x)+tf(x_0)</math>
:נניח בשלילה כי היא אינה רציפה, לכן לפי היינה יש לה גבולות שונים על סדרות שונות. בעזרתן תוכל לסתור את הקמירות --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
:ואם זו אי רציפות סליקה, אזי או שהערך בנקודה גבוה מהגבול וזו סתירה לקמירות, או שהוא נמוך ואז ערכים הקרובים אליו סותרים את הקמירות אם מותחים מהערך בנקודה קו לנקודות באזור --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


ניסיתי לשווא להוכיח עפ"י הגדרה ש<math>lim a_n^{limb_n}=lim a_n^{b_n}</math>  (כאשר הגבולות קיימים). איך עושים את זה? (או מפריכים)
::אפשר להרחיב ? כלומר, איך מראים את זה בשימוש בנתונים הנ"ל ?
:: לאחר שתלמדו על פונקציות רציפות ותוכיחו שפונקצית ln רציפה, התשובה לשאלה תהיה יותר ברורה.
--[[משתמש:מני ש.|מני]]


== בקשר לתרגיל 5 שאלה 5 סעיף א ==
:::נביט שתי הסדרות השואפות לאותה נקודה, עליהן הפונקציה שואפת למקומות שונים. אחד המקומות גבוה מהשני. תיקח שתי נקודות מהסדרה הנמוכה שיש נקודה מהסדרה השנייה בניהן, אז הפונקציה תהיה מעל לקו העובר בין שתי הנקודות בנקודה השלישית, בסתירה. (תנסה לצייר את זה קודם, זה יעזור)--<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


בקשר לרמז שם : איך אני מוכיח באינדוקציה לא מוצא הנחה טובה כדי להחמיר איתה בk+1 זה פשוט לא מסתדר אפשר עזרה?
==מתי שיעורי החזרה?==
תודה
תודה
:: אפשר להסתכל בפתרונות.  :--[[משתמש:מני ש.|מני]]


== תרגיל 5 שאלה 2  ==
<math>\sum x^2</math>
 
==תרגיל 12 שאלה 2 C==
הפתרון לא מובן לי. כיצד מתקיים השוויון הבא:
 
<math>\frac{-1}{2\sqrt\frac{x+1}{x-1}}\frac{2}{(x-1)^2}=\frac{(x-1)^2\sqrt{x-1}}{\sqrt{x+1}}</math>
::יש שם טעות. --[[משתמש:מני ש.|מני]] 18:27, 15 בפברואר 2012 (IST)
 
::::תודה רבה
 
==תרגיל 12 שאלה 3 a==
שוב הפתרון לא מובן לי. כיצד מתקיים:
 
<math>2^{x^e}=e^{\log(2^{x^e})}</math>
 
זה לא אמור להיות:
 
<math>2^{x^e}=e^{\ln(2^{x^e})}</math>
 
::הסימון <math>\log(x)</math> משמש לעתים (וגם בתרגיל זה) תחליף ל- <math>\ln</math> כלומר ללוגריתם בבסיס <math>e</math> . לפעמים הוא משמש כלוגריתם בבסיס 10 (לא הפעם). אין טעות בפתרון במקרה זה. --[[משתמש:מני ש.|מני]] 18:32, 15 בפברואר 2012 (IST)
 
::::תודה רבה
 
==שיעורי חזרה==
1)כדאי לתיכוניסטים להגיע לשיעורי החזרה של הבוגרים?
 
2)כדאי למי שיגיע ללואי להגיע גם למני?
 
'''הבהרה'''
 
שיעורי החזרה של לואי ומני מיועדים רק לסטודנטים שלנו ולא לתיכוניסטים (וזאת מכיוון שאנו רוצים למנוע קבוצות גדולות מדי)
 
יש להגיע רק לאחד מאיתנו, שכן אנחנו פותרים בדיוק את אותם התרגילים. --[[משתמש:לואי פולב|לואי]] 14:22, 16 בפברואר 2012 (IST)
 
:אבל זה ממש נוח לנו.. שיעור החזרה שלנו נגמר בדיוק כששלך מתחיל :(
 
==מבנה המבחן==
מה מבנה המבחן? כמה זמן הוא?
 
==אריתמטית של גבולות==
אם סדרה אחת שואפת לאינסוף והאחרת לאפס, למה שואפת המנה שלהן?
 
לגבי טורים, האם טור מתבדר פחות טור מתכנס, מתבדר? מה לגבי ההפך?
 
:: אם הסדרה ששואפת לאפס שואפת לאפס דרך ערכים חיוביים (מה שהיינו מגדירים בפונקציות שאיפה מימין) אז המנה של השואפת לאפס חלקי זאת ששואפת לאינסוף (אני מתכוון לפלוס אינסוף) תשאף לאפס והמנה ההפוכה תשאף לאינסוף.
 
אם השאיפה לאפס היא דרך ערכים שליליים אז המנות ישאפו לאפס ולמינוס אינסוף בהתאמה.
 
יכול להיות מצב שאחת המנות לא תשאף לגבול. למשל: אינסוף חלקי סדרה ששואפת לאפס אבל נניח שמשנה סימן ואז הגבול של האינסוף חלקי הסדרה ששואפת לאפס לא יהיה קיים. כי יהיו שתי תתי סדרות ששואפת לפלוס אינסוף ולמינוס אינסוף.
 
 
טור מתבדר פחות מתכנס הוא בהכרח מתבדר. כי נניח בשלילה שהוא מתכנס אם נחבר לטור שחיסרנו שנתון שהוא מתכנס נקבל טור מתכנס בסתירה לכך שהטור שממנו חיסרנו היה מתבדר.
 
מתכנס פחות מתבדר גם כן מתבדר משיקולים דומים. --[[משתמש:מני ש.|מני]] 13:06, 17 בפברואר 2012 (IST)
 
==ערכים של טורים==
האם צריך לזכור למבחן ערכים של טורים מסוימים? (לכמה הטור שווה) אם כן אלו ?(לדוגמה הטור ההרמוני המתחלף)
 
בפתרון של מבחן משנה שעברות כתוב: קל לראות ש bn+1/bn שואף לאינסוף ולכןbn שואף לאינסוף. למה?
מה מייצג הסימן f  בחזקת -1. חשבתי שאחד חלקי הפונקציה אבל לפי פתרון המבחן משנה שעברה (שאלה 7) ניראה כאילו גוזרים אותה בתור הפונקציה ההפוכה ל- <math>f</math>
::עדיף לשאול 3 שאלות מנושאים שונים בנפרד ולא תחת נושא אחד. בכל מקרה:
לגבי השאלה הראשונה- לא. אין צורך.
לגבי השאלה השלישית- הסימון מייצג את הפונקציה ההפוכה.
 
שאלה שניה - <math>b_n>1</math> ולכן <math>b_{n+1}>b_{n+1}/b_n</math> לכן אם
<math>\frac{b_{n+1}}{b_n}</math> שואף לאינסוף אז כך גם <math>b_{n+1}</math> (ולכן גם <math>b_{n}</math>)
--[[משתמש:מני ש.|מני]] 20:07, 18 בפברואר 2012 (IST)
 
==נגזרת ורציפות==
אם f גזירה פעמיים ב- <math>[a,b]</math> אז הנגזרת רציפה בקטע הסגור הזה?
::כן. באופן כללי גזירות בנקודה גוררת רציפות בנקודה. כמו כן גזירות ימנית (שמאלית) גוררת רציפות מימין (משמאל בהתאמה).--[[משתמש:מני ש.|מני]] 20:09, 18 בפברואר 2012 (IST)
 
==הגדרת החזקה - שיעור ראשון==
איך מוכיחים ש <math>\sqrt[n]{x^m}=(\sqrt[n]{x})^m</math>?
 
:נניח שהם שונים, נעלה את שניהם בחזקת <math>n</math> ונקבל סתירה, לפי החוק <math>(a^n)^m=(a^m)^n</math> (אותו קל להוכיח) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::ציין אם זה נכון: בגלל ש- <math>n,m</math> הם מספרים טבעיים, נקבל שכל אחד מהאגפים שווה לפי עקרון הכפל הקומבינטורי ל- <math>a^{nm}</math> , ולכן לאחר ההנחה בשלילה נקבל
::<math>\sqrt[n]{x^m}\ne(\sqrt[n]{x})^m\Rightarrow x^m\ne((\sqrt[n]{x})^m)^n\Rightarrow x^m\ne((\sqrt[n]{x})^{mn}=((\sqrt[n]{x})^n)^m=x^m</math> בסתירה.
:::כן. וזה נובע מכך שמספרים חיוביים שונים בחזקה חיובית נותנים תוצאה שונה, גם את זה קל להוכיח באינדוקציה - הגדול יהיה גדול יותר. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
==היינה באינסןף==
אם <math>\lim\limits_{x\to\infty}f(x)=L</math> , זה אומר לפי היינה שגם <math>\lim\limits_{n\to\infty}f(n^2-n\ln(n))=L</math> , נכון?
::נכון. --[[משתמש:מני ש.|מני]] 12:58, 19 בפברואר 2012 (IST)
 
==מבחן תשנ"ט שאלה 2ג.==
במבחן כתוב <math>\frac{1}{\log\left(\frac{1}{n}\right)}</math> כאשר n מ-1 עד אינסוף. ב-1 הביטוי לא מוגדר.
::נכון. בימים אלה אנחנו חוגגים בר מצווה לטעות. --[[משתמש:מני ש.|מני]] 19:36, 19 בפברואר 2012 (IST)
:::זאת תשובה ממש משעשעת :) (my work here is done!)
 
==גבולות==
אם סדרה <math>a_n</math> שואפת למספר טבעי ממשי מאפס וסדרת <math>b_n</math> שואפת לאפס דרך החיוביים. <math>\frac{a_n}{b_n}</math> שואפת לאינסוף? או שבמנה חייב להיות מספר ממשי ולא משהו ששואף אליו?
:מה הכוונה למספר ממשי "מאפס"? כלומר מהצד שקרוב יותר לאפס? בכל מקרה הגבול הזה אכן יהיה אינסוף --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
==דוגמה 2 לטורים חיוביים==
יש [http://math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%98%D7%95%D7%A8%D7%99%D7%9D/%D7%9E%D7%91%D7%97%D7%A0%D7%99%D7%9D_%D7%9C%D7%97%D7%99%D7%95%D7%91%D7%99%D7%99%D7%9D/%D7%93%D7%95%D7%92%D7%9E%D7%90%D7%95%D7%AA/טעות] במכנה כשמפתחים את המנה של אברים עוקבים.
 
:מוזמן לתקן. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::תיקנתי.
 
==<math>0^0</math>==
יש דוגמה לגבול מהצורה <math> 0^0</math> ששואף ל-2?
 
:<math>2\Big(\frac{1}{n}\Big)^{\frac{1}{n}}</math> --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::לא לזה התכוונתי... רציתי שכל הביטוי יהיה רק חזקה ומעריך, כלומר שהוא יהיה מהצורה <math>0^0</math> בלבד. באותה המידה יכולת להוסיף 1.
:::<math>\left(\frac{1}{2^nn}\right)^{-\frac{1}{n}}</math> ככה? (: --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::::כן, תודה! פשוט להכניס את ה2 לבסיס... (<math>\left(\frac{1}{2^n}\right)^{\frac{1}{n}}</math> זאת דוגמה יפה יותר, כי אז הביטוי יהיה קבוע למרות הצורה <math>0^0</math>)
 
==דוגמה 3 לטורים חיוביים==
[[http://math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%98%D7%95%D7%A8%D7%99%D7%9D/%D7%9E%D7%91%D7%97%D7%A0%D7%99%D7%9D_%D7%9C%D7%97%D7%99%D7%95%D7%91%D7%99%D7%99%D7%9D/%D7%93%D7%95%D7%92%D7%9E%D7%90%D7%95%D7%AA/3]] התכוונתם לרשום ש'''לפחות''' שני שלישים, כנראה. מה שכתוב כרגע נכון רק ל-n ששקול ל0 מודולו 3.
 
נוסף על כך, ההתקדמות קצת מהירה מדי (עבורי) שם - כדאי להוסיף הסבר מילולי נוסח
 
"נקטין את כל האברים במכפלה שגדולים מ- <math>\frac{n}{3}</math> , ומכיון שיש לפחות <math>\frac{2}{3}n</math> כאלה נקבל ש
 
<math>n!=1\times2\times\cdots\times\left\lfloor\frac{n}{3}\right\rfloor\times\left(\left\lfloor\frac{n}{3}\right\rfloor+1\right)\times\cdots\times n\ge1\times2\times\cdots\times\left\lfloor\frac{n}{3}\right\rfloor\times\left(\frac{n}{3}\right)^{\frac{2}{3}n}\ge\left(\frac{n}{3}\right)^{\frac{2}{3}n}</math>
 
ומכיוון ששני האגפים חיוביים ניתן להעלות בריבוע."
:(לא התייחסתם, אז הוספתי.)
 
==דוגמה 5 לטורים חיוביים==
הוכחת האינדוקציה נראית לי שגויה. (מה שכתוב שם לא הגיוני)


1.על מנת להוכיח ש-0 הוא הגבול החלקי היחיד. מספיק לי להוכיח (בדומה להוכחה בכיתה) שקיימת סביבה של L
צריך להיות פשוט <math>\frac{b_{n+1}}{b_1}=\frac{b_{n+1}}{b_n}\cdot\frac{b_n}{b_1}\ge\frac{a_{n+1}}{a_n}\frac{b_n}{b_1}\ge\frac{a_{n+1}}{a_n}\frac{a_n}{a_1}=\frac{a_{n+1}}{a_1}</math> (א"ש ראשון לפי הנתון, שני לפי הנחת האינדוקציה)
(0,2L) כך שב-+R אי זוגיים אין לי כלל איברים ובזוגיים יש לי n0 איברים?
:תוקן --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


2. יכולתי לצורך העניין לקחת דוג' מספרית נגיד הסביבה של 2 ולהסיק באותה הדרך על (0,4) למשל?
==טעויות במדמ"ח 11 שאלה 4==
:: יש שוני מהותי בין התרגיל הזה לבין התרגיל שהיה בכיתה. בתרגיל שהיה בכיתה (אם אני זוכר אותו נכון)
בסעיף ב' יש טעות טריגונומטרית, בסעיף ד' המעבר האחרון שגוי.
היו שני גבולות חלקיים אחד 0 (למעשה  כל האיברים במקומות האי זוגים היו אפס , או שזה היו דוקא האיברים במקומות הזוגיים אני לא זוכר) והשני אינסוף.


נניח שהזוגיים שאפו לאינסוף אז ידענו מהגדרת שאיפה לאינסוף שכמעט כל איברי תת הסדרה הזו  בקרן
==שאלה 1 א במבחן שהיה ב-2008==
<math>(2L,\infty)</math> ולכן הסקנו שיש בסה"כ לכל היותר מספר סופי של איברים בקטע (0,2L). המצב בתרגיל הזה שונה מאד גם האי זוגיים וגם הזוגים שואפים לאפס. לכן ההוכחה ההיא פשוט לא תעבוד, הטיעון שצינתי קודם ממש אינו נכון במקרה זה וצריך לקחת סביבת אפסילון אחרת.
בשאלה כתוב הגבול של הסדרה <math>\lim_{n\to\infty}\bigg[\sqrt{n-\sqrt{n}}-\sqrt{n-\sqrt[3]{n}}\bigg]</math>. אפשר רמז לפתרון הגבול הזה?
::תכפילו ותחלקו ב- <math>\sqrt{n-\sqrt{n}}+\sqrt{n-\sqrt[3]{n}}</math> .
--[[משתמש:מני ש.|מני]] 19:17, 21 בפברואר 2012 (IST)
::ואז?
::מצמצמים את המונה והמכנה בביטוי "הכי גדול" כלומר ב- <math>\sqrt{n}</math>  --[[משתמש:מני ש.|מני]] 20:40, 21 בפברואר 2012 (IST)


==פונקציות==
איך באופן כללי לענות על שאלות רציפות? עם כל ההגדרות כמו שכתוב במערכי תרגול או שאפשר גם לכתוב איפה שאפשר ב"הגיון"?
:לפי הגדרות ולפי משפטים בלבד --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


אפשר להיעזר בעובדה שבמקומות האי זוגיים הסדרה זהותית אפס ובמקומות הזוגיים סדרה מונוטונית יורדת לאפס
==שאלה==
הוכיחו כי הטור <math>\sum_{n=1}^\infty a_n</math> מתכנס בהחלט אם ורק אם קיים <math>C>0</math> כך שלכל סדרה <math>\{b_n\}_{n=1}^\infty</math> המקיימת כי
<math>|b_n|\le1</math> לכל <math>n\in\N</math> וכן <math>\lim_{n\to\infty}b_n=0</math> מתקיים כי <math>\sum_{n=1}^\infty a_n\cdot b_n\le C</math>


נ"ב, אני משום מה לא מצליח לרדת שורה, למרות שאני לוחץ על אנטר. תודה


שהאיבר הראשון שלה הוא <math>2(\frac{4}{5})^2</math> ברור שאם היה בכלל איזשהו גבול חלקי אחר הוא היה צריך להיות בין 0 ל <math>2(\frac{4}{5})^2</math>. לכן מספיק להראות שלא קיים גבול חלקי L בטווח זה. מכיון שסדרת  הזוגיים שואפת לאפס ניתן להסיק שלכל L בטווח זה קיים  n0 יחיד כך ש
:השאלה הופיע בתרגילי הבית של תשע"א: [http://math-wiki.com/images/b/b9/10Infi1Targil7Sol.pdf ראה פתרון של תרגיל 8].  


<math>2(\frac{4}{5})^{2(n_0+1)}\leq L\leq 2(\frac{4}{5})^{2n_0}</math> מזה אפשר להסיק שקיימת סביבת אפסילון  לL שאין בה בכלל איברים מאיברי הסדרה ולכן L אינו גבול חלקי.--[[משתמש:מני ש.|מני]]
:בכיוון השני אתה יכול גם להראות שהסדרה <math>a_n</math> מקיימת את תנאי קושי, כך שבכל פעם תבחר סדרה מתאימה.


== תשובות לתרגיל 5 באינפי לאנשי מדעי המחשב ==
==שאלה ממערכי תרגול - פונקציות קושי==
היי ארז!
מצ"ב מערך תרגול http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%95%D7%AA/%D7%92%D7%91%D7%95%D7%9C_%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94
בשאלת ההוכחה הראשונה של קושי בה צריך להוכיח שהגבול הוא שמונה, לאחר שעשינו מכנה משותף ופישטנו את הביטוי והשאפנו את איקס ל-2 מה מעיד על כך שצריך להגדיל את השבר?ו..איך מוצאים את הדלתא????


שלום רב,  
:אנחנו רוצים להגדיל את כל הביטוי, ולמצוא דלתא שמבטיח שאפילו אחרי שהגדלנו הביטוי יהיה קטן מאפסילון ללא תלות באיקס. על מנת להגדיל את הביטוי אנחנו צריכים להקטין את המכנה. על מנת להקטין את המכנה אנחנו צריכים למצוא מספר גדול מאפס שקטן תמיד מהמכנה. אנחנו בוחרים דלתא שנותן לנו מספר כזה.. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
מדוע לא פורסמו התשובות לשאלות של תרגיל 5 במדעי המחשב?
איך נוכל להשוות וכן איך נוכל ללמוד עבור הבוחן שיש שבוע הבא?
תודה רבה.
:תרגיל חמש עוד לא הוגש, כעת עוד לא נכתבו פתרונות. תלמדו מהחומר שכן יש, ואתם מוזמנים לשאול שאלות במקרה ומשהו לא ברור --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== מערכי התרגול, אינפי1, חסמים ==
== בתרגיל להלן שיש לו קישור  ==
 
לא ברור איך ידעת מאיפה להתחיל .. אפשר הסבר לאיך הגעת לנקודת ההתחלה מה רמז לך לזה?
תודה
http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A1%D7%93%D7%A8%D7%95%D7%AA/%D7%9E%D7%95%D7%A0%D7%95%D7%98%D7%95%D7%A0%D7%99%D7%95%D7%AA


שלום ארז,
אני חושב שבמערכי התרגול של חסמים בהוכחת המשפט על חסם עליון חסר טקסט. הטקסט מסתים "מכיוון שאפ " ..
עיונך. =].
:אביט בזה, תודה --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== בוחן מדמ"ח ==
:יש שם כמה תרגילים, הכוונה לראשון? כאשר אנחנו מקבלים סדרה שאנו רוצים להוכיח שהיא מתכנסת יש לנו מספר שיטות. האחת היא להראות מונוטוניות וחסימות, השנייה היא למצוא נוסחא מפורשת (קשה במקרה זה) ואחרת היא להראות תנאי קושי. אין דרך לדעת בוודאות מראש איזו שיטה עובדת, יש לנסות את כולם עד אשר מצליחים לפתור את התרגיל. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


האם הבוחן הקרוב יכלול שאלות מתרגיל 2 - חסמים? (כן אנחנו יודעים שחייב לדעת חסמים בשביל סדרות, זה רק בשביל למקד קצת יותר).
::סורי שלא ציינתי זאת התכוונתי לתרגיל השני עם a1=אלפא b1=ביטא    נ.ב- "לא קונה בלי תימני"
:לא --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== תרגיל 6 , שאלה 4 ==
:::כמו בתרגילים אחרים, העצה היא להתחיל לרשום כמה איברים ראשונים של הסדרה. מהר מאד רואים שאחת עולה, השנייה יורדת, והשנייה גדולה מהראשונה. אחרי שרואים את זה ניגשים להוכיח במרץ --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


האם מותר השימוש במשפט סדרה שלא מתכנסת ל0 הטור שלה מתבדר?
== היינה- שאלה קטנטנה ==
::כן.--[[משתמש:מני ש.|מני]]


== בקשר ל-ln ==
היי, בקובץ המצורף http://math-wiki.com/images/7/7b/10Infi1Targil8Sol.pdf בשאלה 3.
השאלה פשוטה עקרונית. אבל מבחינת ההוכחה יכולתי לומר שמתקיים לכל סדרה לקחת בפרט סדרה כלשהי (נגיד 1 חלקי n ) ששואפת ל-0 להפעיל עליה את f ולומר שמדובר על מכפלה של אפסית בחסום ולכן הגבול אפס. אמת?  
:לא מספיק להוכיח לסדרה מסויימת, חייבים להוכיח שזה מתקיים לכל סדרה. אחרת יכול להיות שעל הנקודות של 1 חלקי n קורה משהו אחד, ועל נקודות אחרות בסביבת אפס קורה משהו אחר --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


האם ln(n שואף לאינסוף? ו1 חלקי הביטוי הזה שואף ל0?
== הוכחה של גבול ==
ומה קורה במקרה של n =1 ? n  מתייחסים אליו?


היי,
השאלה: הוכח שlimcosx=1 כאשר x שואף ל-0.
בוחרים סדרה כלשהי שמתכנסת ל-0 ואז מה ניתן לעשות?
תודה
תודה


:(לא מתרגל): כן, (ln(n שואפת לאינסוף, כי יהי M ממשי, ניקח N = e^M וכל n טבעי שגדול מ N מתקיים ln(n)>M . 1 חלקי הביטוי הזה מתכנס ל 0 כי נראה לי שמשפט כזה היה בשיעורי בית (בכ"מ ממש קל להוכיח שאם סדרה מתכנסת לאינסוף אז ה"הופכית" שלה מתכנסת ל 0). עבור n=1 הביטוי לא מוגדר.
:תלוי מאיפה השאלה בחומר. בהרצאה הוכחנו שקוסינוס וסינוס הן פונקציות רציפות, זה נובע ישירות מהגדרת הרציפות --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
== לא הצלחתי שאלה במבחן מסוים... ==
 
http://www.studenteen.org/inf1_exam_zalcman_2009_a.pdf תרגיל 2 ג  הוכחתי שזה מתכנס בתנאי לפי דריכלה אבל אין לי רעיון עם מתכנס בהחלט...
:זה לא מתכנס בהחלט. בלי הקוסינוס זה נכון לפי מבחן העיבוי, עם הקוסינוס ניתן להוכיח שקוסינוס בערך מוחלט גדול מקבוע מסויים לפחות כל פעם שנייה. הרי אם הוא קרוב לאפס, אחרי אחד הוא יתרחק ממנו. לכן זה גדול מקבוע כפול טור מתבדר ולכן מתבדר. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::לא הבנתי כל כך איך אני מוכיח שזה מתכנס בתנאי...
:::מבחן דיריכליי, הוא רשום במפורט במערכי תרגול. '''אבל''' להבנתי אסור לכם להשתמש בזה במבחן, וכנראה לא יהיה תרגיל כזה במבחן. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
== לא הצלחתי לסווג את הנקודות קיצון ==
 
http://u.cs.biu.ac.il/~sheinee/tests/math/88132/4ef1a2e00a144.pdf שאלה 6 א את 0 הצלחתח בעזרת לופיטל אבל לא הצלחתי את PI/2+PK
::מדובר בסוג שני. מספיק להוכיח שהגבול השמאלי ב <math>\frac{\pi}{2}</math> אינו סופי. (אם הוא אינסופי או לא קיים בכל מקרה מדובר בסוג שני) וזה משליך גם על כל הנקודות האחרות. מספיק להוכיח שהגבול  השמאלי של המונה אינו סופי. (למה?) נניח בשלילה שהגבול סופי אזי בהכרח הגבול בין 1 למינוס 1 (נובע מערכי סינוס). נניח שהגבול הוא a.  כעת ניתן להפעיל arcsin על שני האפים שהיא פונקציה רציפה בתחום הגדרתה (משתמשים כאן ברעיון של שאלה 2 מתרגיל 10) וכמו כן לזכור ש arcsinsin t=t  ונקבל ש
<math>\lim_{x\to (\frac{\pi}{2})^-}tan x=arcsin a </math>
אבל arcsin a הוא מספר סופי ומצד שני ידוע ש <math>\lim_{x\to (\frac{\pi}{2})^-}tan x=\infty </math>
וזו סתירה להנחה.--[[משתמש:מני ש.|מני]] 01:08, 8 באפריל 2012 (IDT)
 
== מבחן נוסף... ==
 
http://www.studenteen.org/ חשבון אינפי 1 בחינות של  שמואל קפלן קובץ 2 תרגיל 1 א
 
:אפשר להוכיח באינדוקציה ש<math>2^{n}>n^{3}</math> החל מn מסויים, מכאן תמשיך!
אופס קודם התבלבלתי תרגיל 1 ג
::ניתן להיפטר מarcsin ע"י הצבת <math>x=sint</math> ואז מקבלים גבול כש <math>t</math> שואף לאפס
מקבלים גבול מהצורה של 1 בחזקת אינסוף. אותו אפשר לפתור ע"י הטלת ln (בסוף צריך להפעיל e בחזקת התוצאה הזו כדי לקבל את הגבול המקורי) אחרי השלב של הln פותרים בעזרת לופיטל. --[[משתמש:מני ש.|מני]] 19:36, 8 באפריל 2012 (IDT)
 
== אפשר רמז? ==
 
אם פונציה f 
1.רציפה על [a,b] ,
2. קיימת נגזרת סופית בקטע ..(למיטב הבנתי הנגזרת חסומה..)
3. הפונקציה לא לינארית..(במה בדיוק זה עוזר לי?)
צ"ל שקיימת לפחות נק' אחת שבה הנגזרת יותר גדולה מהנגזרת בין a לb  לפי לגראנג'..(כאילו
f(b) -f(a)/b-a< f'(c)
::ברגע שהפונקציה לא ליניארית אז לא יתכן  ש <math> f(x)=f(a)+(x-a)\frac{f(b)-f(a)}{b-a}</math>
לכל x.
כלומר בהכרח קיים <math>a<x<b</math> כך שבמקום שוויון יש אי שוויון.
אם למשל  <math>f(x)</math> גדול מאגף ימין אז ניתן להסתכל בביטוי
<math> \frac{f(x)-f(a)}{x-a}</math> ולהסיק ש...
אם אי השוויון הוא בכיוון השני אז ניתן להתבונן ב <math> \frac{f(b)-f(x)}{b-x}</math> ולהסיק הדרוש. --[[משתמש:מני ש.|מני]] 20:08, 8 באפריל 2012 (IDT)
 
 
 
תודה :-)
 
== מבחן השורש של קושי לטורים חיוביים. ==
 
בהוכחת מבחן השורש לטורים חיוביים נעזרים במשפט עזר על אפייון הלימסופ, בו נאמר פחות או יותר-
תהי '''סדרה כלשהי''', אם קיים מספר כלשהו אשר גדול מהלימסופ של הסדרה, אזי קיימים לכל היותר מספר סופי של איברים..כמו כן קיים ניסוח גם למקרה ההפוך.
השאלה שלי היא, האם אין צורך לדרוש את הקיום הזה לכל סדרה חסומה?
::לא. זו דוגמא טובה לתנאי שמתקיים באופן ריק. אם למשל הסדרה לא חסומה מלעיל אז הגרירה: "אם קיים מספר כלשהו אשר גדול מהלימסופ של הסדרה, אזי קיימים לכל היותר מספר סופי של איברים.."  היא בהכרח '''פסוק אמת''' כי הרישא היא שקרית (הלימסופ הוא אינסוף ולכן לא קיים מספר הגדול ממנו) ולכן לא משנה מה תוצאת הגרירה, הפסוק יהיה פסוק אמת. --[[משתמש:מני ש.|מני]] 11:25, 9 באפריל 2012 (IDT)
 
== שאלה למבחן ==
 
אפשר להשתמש בעובדה שהטור <math>\forall \alpha \in (-1,0]: \sum_{n=1}^{\infty} n^{\alpha}</math> מתבדר
 
ושהטור <math>\forall \alpha \in (-\infty ,-1]: \sum_{n=1}^{\infty} n^{\alpha}</math> מתכנס? או שצריך להוכיח כל פעם?
 
:רק תיקון קל, הטור מתכנס אם <math>\alpha<-1</math>.
:: תיקנתי...
 
:::עקרונית כן, תשאל בזמן המבחן. אם אומרים שלא, אז תוכיח באמצעות מבחן העיבוי (קלי קלות) --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
::::קל לראות ש... - [http://knowyourmeme.com/photos/230191-wtf-is-this-shit בודאי!]
::::: נו לאן הגענו ששואלים שאלה ועונים עליה עם מימי ?
תודה בכל מקרה ארז :-)
 
== רציפות במש ==
 
x*logx היא רציפה במש? נראה לי שלא אבל לא הצלחתי למצוא סדרות שיפריכו לי
::יש את הדוגמא הזו במערכי התרגול בנושא רציפות במ"ש. --[[משתמש:מני ש.|מני]] 15:18, 10 באפריל 2012 (IDT)
 
== האם סביר שיהיה שאלה על נקודות הצטברות במבחן? ==
 
ואם כן...
מה עושים עם זה :
תהי A קבוצת נקודות ממשיות. נקרא נקודה פנימית של A  לנקודה  a שייכת ל A עבורה יש סביבת אפסילון מוכלת(עבור אפסילון>0 כלשהו) המוכלת כולה ב- A.
הוכיחו כי אם B היא קבוצה המכילה את כל נקודות ההצטברות שלה, אזי הקבוצה המשלימה שלB  (שהיא R/B ) אינה מכילה אף נקודת הצטברות שאינה נקודה פנימית של R/B .
::אני בספק אם תהיה שאלה בנושא.  אבל,  בהנחה שנקודות הצטברות נלמדו בהרצאה אני מניח שהסיכוי הוא לא אפס. איך אפשר להוכיח? ניתן להוכיח אפילו יותר- שבתנאי השאלה R\B  אינה מכילה אף נקודה  שאינה נקודה פנימית של R\B (בלי קשר אם הנקודה היא נק' הצטברות). נניח בשלילה שקיימת נקודה x השייכת לR\B וגם  שx אינה נק' פנימית של R\B.
x אינה נק' פנימית של R\B  ולכן משלילת ההגדרה של נק' פנימית נקבל שכל סביבת אפסילון של x לא מוכלת ב R\B. זה שקול לכך שהחיתוך של כל סביבת אפסילון של x עם B אינו ריק. כמו כן מכיון שx שייכת ל R\B
אז לכל אפסילון > 0 בחיתוך הנ"ל שאינו ריק קיימת נקודה השונה מx. לכן עפ"י ההגדרה (או אחת השקולות)
x נקודת הצטברות של B אבל הקבוצה B מכילה את כל נקודות ההצטברות שלה, ומכאן x שייכת לB בסתירה לכך ש  x שייכת לR\B.--[[משתמש:מני ש.|מני]] 15:32, 10 באפריל 2012 (IDT)
 
== רציפות במש ועוד שאלה... ==
 
להוכיח או להפריך שxcosx רציפה במש(אני די בטוח שזה הפרכה) ולהוכיח ש:הטור an מתכנס בהחלט אם ורק אם לכל סדרה bn המתכנסת ל0 הטור anbn מתכנס
הצלחתי את הכיוון של אם an מתכנס בהחלט אבל לא הצלחתי את השני טנקס!!!
וגם x*sin(1/sinx) למצוא נקודות אי רציפות:מצאתי שx=pi*k זה נקודות האי רציפות ומצאתי ש0 זה נקודת אי רציות סליקה אבל בקשר לשאר הנקודות אני לא יודע
 
 
לגבי <math>xcosx</math> אתה בוחר שתי סדרות <math>x_n , y_n</math> כך שהפרשן מתכנס ל-0, אבל <math>f(x_n)-f(y_n)</math> לא מתכנס ל-0.
 
לגבי הנקודות אי רציפות אני מזכיר שאם אחד הגבולות החד צדדים הוא אינסוף, זה נקודת אי רציפות מהסוג השני.
אם שני הגבולות החד צדדיים שווים, אבל בנקודה הזאת הפוקנציה לא מוגדרת, זה נקודת אי רציפות סליקה.
 
לגבי הטורים: מניחים שלכל סדרה <math>b_n</math> שמתכנסת ל-0 הטור <math>\sum a_n b_n</math> מתכנס, ואז אתה בוחר בחכמה את הסדרה <math>b_n</math> בצורה כזו שאתה מגיע ישירות מהטור <math>\sum a_n b_n</math> לטור <math>\sum |a_n|</math> . מקווה שעזרתי :-)
אפשר כאילו עזרה יותר ממה שברור מאליו? אני ניסיתי איזה שעה ומשהו את זה ולא הצלחתי..
 
:יש תשובות לכל השאלות האלה במערכי התרגול ובפתרונות תרגיל הבית מהשנה ומשנה שעברה. לגבי השאלה האחרונה, מחשבים גבולות חד צדדיים בעזרת לופיטל --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
== מועד א' מדמ"ח שאלה 4 א' ==
 
בפתרון רשמתם ש: כיוון שגבולותיה של הנגזרת באפס ובאינסוף סופיים והיא רציפה בכל נקודה בקטע, היא חסומה בקטע.
 
לכן לפי משפט הפונקציה f רציפה במ"ש בקטע.
עכשיו לא לגמרי ברור לי למה הגבול באפס של הנגזרת סופי..כאילו הקוסינוס של <math>1/x</math> יכול להיות כמעט כל דבר כש הx שואף לאפס..
 
: את צודקת, הניסוח שגוי. הנגזרת היא סכום של שתי  פונקציות. הקוסינוס חסומה ולפונקציה השנייה גבולות סופיים ולכן חסומה. סכום חסומות היא חסומה --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
== מבחן דמה למתמטיקאים... ==
 
בקשר ל4 ב כאילו צריך שהנגזרת של הרציונלים תהיה שווה לנגזרת של האי רציונלים וגם שהפונקציה תהיה רציפה בנקודה?
5א אפשר רמז?
:לגבי 4ב - כן. לגבי 5א - איזה אי רציפות יש לפונקציה? תחשוב על פונקציה כזו לדוגמא ותראה מה קורה בה, ואולי תבין... --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::הבנתי שהנקודת אי רציפות הינה מסוג שני שהגבול אינו מוגדר(כאילו לא אינסוף) אבל מה הלאה? נראה לי משהו ברציפות במש כאילו הוכחתי שהנגזרת לא יכולה להיות חסומה מלעיל וגם מלרע אבל לא רק להוכיח שהיא לא יכולה להיות רק מלרע/מלעיל
:::אם הפונקציה קופצת בין שני גבהים שונים היא צריכה גם לעלות וגם לרדת. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::::אז? כאילו אין לי שום רעיון עם זה... כאילו נגזרת חיובית ושלילית?
:::::הנקודות בציר x מתקרבות, ובציר y מתרחקות, מה זה אומר על השיפוע? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
אולי תעלה את התשובה באופן מסודר אני בחיים לא אצליח את זה וגם מלא לא מצליחים את זה...(כאילו עד עכשיו אף אחד לא פתר לי את זה)
 
== בקשר למבחן דמה השני שאלה 5 ==
 
f(x)=0 זה הרכה על א לא? כי הנגזרת היא 0 ומונוטנית וגם הפונקציה מונוטנית
:נכון--<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
 
== שאלה לגבי המבחן ==


שלום רב,
האם יהיה במבחן שאלה של גזירת פונקציות כמו שהיו במבחנים של פרופ זלצמן?
הבנתי כי הבוחן יכלול שאלות מתריול חמש,
תוכל בבקשה להעלות פתרונות של התרגול?  
תודה.
:הועלו פתרונות.


== [מדמ"ח] תרגיל 5 שאלה 2 סעיף ג ==
לדוגמא: גזור את הפונקציה
<math>\frac{\arctan (e^{sin(x)})}{(log(x))^2}</math>
:לא בטוח שבאופן ישיר, אבל צריך לדעת לגזור כחלק מלופיטל וכדומה --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


זה אמנם לא משנה את הפתרון אבל בשלב האחרון בתשובה ששמתם, האיבר האחרון במונה הוא
== יש נגזרת כללית בטור טיילור במבחן?ואם כן אפשר לדעת אותה? ==


<math>1 / (n ^ 10)</math>
טנקס


זה לא אמור להיות
== תרגיל מת"א ==


<math>1 / (n ^ 1.5)</math>
איך פותרים את 8א מתרגיל 4?
?


== שאלה לא סטנדרטית ==


:צודק, הרי כפלנו את המונה ואת המכנה ב <math>\frac{1}{n^{5/2}}</math> --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
אני מעוניין לפרמל ולהוכיח את הטענה שככל שנסתכל על טווח גדול יותר, הפונקציה <math>\sum_{k=1}^{N}sin^2(k)</math> תהיה קרובה יותר לישר <math>f(x)=\frac{1}{2}x</math>.


== שאלה 4 א' ==
דא עקא, אין לי קצה חוט.


לא הבנתי את הפתרון נראלי שהם דילגו על מספר שלבים ולא הכלילו את הINF בפתרונם
(בהשראת שאלה משימושי מחשב - בדקתי עד <math>10^6</math>, הטענה נכונה.)
:מראים שם, שאם ניקח תת-סדרה '''מתכנסת''' של <math>a_n</math>, אזי הגבול שלה יהיה גדול או שווה ל <math>-\limsup(-a_n)</math>.
:כמו כן, מצאנו תת סדרה ספציפית המתכנסת לגבול זה.


:ביחד, יוצא שזה הגבול החלקי הכי קטן של <math>a_n</math> או במילים אחרות, <math>\liminf(a_n)=-\limsup(-a_n)</math>
== בקשר למועד ג ==
:--<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== [מדמ"ח] תרגיל 5 שאלה 4 סעיף ב ==
האם אפשר לשאול עדיין שאלות פה?
האם הפורום פועל עד למועד ג?
 
תודה
:כן
ענו פה כן באנונימיות
האם זה כן של אחד המתרגלים?


ניסיתי שעות להבין את הפתרון ללא הצלחה.
:כן
נראה כאילו בכל שורה מגיעים למסקנות לפי חוקים שלא למדנו בכלל או למסקנות לא הגיוניות בכלל (למשל את הסוגריים בפתרון נראה לי שאפשר להפריך).
אתה יכול להסביר מה בדיוק הולך שם?
(עם תקווה קלושה לתגובה עוד היום ^_^)


== שאלה כללית על  טורים ==


האם אפשר לכתוב בפוסט הזה את המשפטים כמו אם שני טורים מתכנסים אז הסכום של שניהם גם מתכנס וכן הלאה? האם מכפלת טורים מתכנסים גם היא טור שמתכנס? פשוט אני לא מוצא את זה בשום מקום תודה..
== שאלה כללית על הטור סיגמא 1/n ==
:סכום של טורים מתכנסים מתכנס, מכפלה '''בקבוע''' של טור מתכנס היא מתכנסת. מכפלת טורים היא דבר לא מוגדר, אם אתה כופל איבר איבר אז זה מתכנס אם הטורים חיוביים, ואם לא זה לא חייב להתכנס. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== תרגיל 7 שאלה 1 ==
הרי ההגדרה להתכנסות של טור היא ש
אם s1...sn שואפים ל-L
כלומר קיים גבול סופי לסדרת הסכומים החלקיים אז הטור מתכנס ובקשר ל
1/n


אם הראתי ע"פ כלל מסויים שהוא מתכנס וע"פ כלל מסויים אחר או אולי אותו כלל שהוא מתבדר זה אומר שהיא אפשר להסיק כלום לגביו? תודה
זה נראה
:: כדי להוכיח שמהתבדרות הטור <math>\sum_{n=1}^\infty a_n</math> לא ניתן להסיק שהטור השני שבשאלה מתבדר מספיקה דוגמא נגדית לטור א' שמתבדר אבל שהטור  ב' מתכנס. באופן דומה תספיק דוגמא נגדית אחרת... בשביל להוכיח שלא ניתן להסיק מהתבדרות סוג א' את התכנסות סוג ב'. --[[משתמש:מני ש.|מני]]
s1=1/1
s2=1/1+1/2
s3=1/1+1/2+1/3


מני היקר אני באמת לא מבין איך אתה מסיק מהשאלה שצריך רק שתי דוגמאות נגדיות ולא הוכחה כללית כי הרי הדוגמאות מראות רק לסדרות ספציפיות ולא לכל הסדרות.. תודה....
וזה נותן הרגשה שיש התכנסות כי התוספת הולך ונהיית קטנה יותר
:: אם השאלה היתה: "הוכח שמהתבדרות הטור החיובי <math>\sum_{n=1}^\infty a_n</math> ניתן להסיק שהטור <math>\sum_{n=1}^\infty \frac{a_n}{1+a_{n}^2}</math> מתבדר", מה היה צריך להוכיח?  שאם יש טור חיובי '''כלשהו''' <math>\sum_{n=1}^\infty a_n</math> המתבדר אז גם 
עכשיו זה דוגמא למקרה שאני רוצה לבדוק בעזרת האינטאויציה אם טור מתבדר/מתכנס אז למקרים דומים זה אומר שפשוט לא להסתמך על האינטואיציה?
<math>\sum_{n=1}^\infty \frac{a_n}{1+a_{n}^2}</math> מתבדר.


אם מבקשים להוכיח '''שלא''' ניתן להסיק את זה אז המשמעות היא שדווקא צריך למצוא דוגמא נגדית. כנ"ל לגבי '''אי''' האפשרות להסיק שאם
תודה
שאם יש טור חיובי כלשהו <math>\sum_{n=1}^\infty a_n</math> המתבדר אז 
:האינטואיציה שאתה מתאר היא שטורם מתכנס אם ורק אם הסדרה שלו שואפת לאפס. זה לא נכון כמו בדוגמא שהזכרת, כי הסדרה אינו יורדת מספיק מהר/חד/תלולה לאפס --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
<math>\sum_{n=1}^\infty \frac{a_n}{1+a_{n}^2}</math> מתכנס.
--[[משתמש:מני ש.|מני]] 16:41, 21 בדצמבר 2011 (IST)


== תרגיל 7 שאלה 4 ==
== האם יש פירוק יפה לביטוי ==


לא הבנתי איך הכיוון <math>=></math> מתקיים.
1-sqrt3(x)
הרי אפשר להציב <math>a_n=\frac{1}{n}</math> ו <math>b_n=(-1)^{n+1}</math> ובמקרה זה הטור <math>\sum_{n=1}^\infty a_nb_n</math> מתכנס לפי לייבניץ ואילו הטור
במילים אחד פחות שורש שלישי של איקס
<math>\sum_{n=1}^\infty |a_n|</math> אינו מתכנס.
לפי הבנתי הדבר צריך להתקיים '''לכל''' סדרה <math>b_n</math> חסומה.
תודה
תודה
--[[משתמש:רן|רן]]--




הכיוון שאתה מדבר עליו דורש שהטור יתכנס '''לכל''' סדרה חסומה. הדוגמא שלך לא סותרת את הטענה, כי הטור
**
<math>\sum_{n=1}^\infty b_n \frac{1}{n}</math>=<math>\sum_{n=1}^\infty b_n a_n</math>
תנסה להתייחס לזה כאל1/3^(x-1)ואז תנסה להמשיך עם הנוסחא a^3-b^3=(a-b)*(a^2+b^2+ab
לא מתכנס '''לכל''' סדרה חסומה <math>b_n</math>. למשל, הוא מתבדר עבור הסדרה הקבועה <math>b_n=1</math>. --[[משתמש:לואי פולב|לואי]] 22:48, 21 בדצמבר 2011 (IST)
בהצלחה!


הבנתי תודה רבה.
== קצת סדר בנוגע לגבולות עליונים ==


== הבדלים בהגדרת הגבול ==
תהיינה <math>\left \{ a_n \right \},\left \{ b_n \right \}</math> סדרות. האם תמיד מתקיים <math>\overline{\lim}a_nb_n=\overline{\lim }a_n \; \overline{\lim }b_n</math>
, כשהגבולות הנ"ל קיימים?
:לא בהכרח. קח <math>a_n=0; b_n=1</math> לכל n זוגי ו-<math>a_n=1; b_n=0</math> לכל n אי זוגי. המכפלה היא סדרה שקבועה על אפס, לכן הגבול העליון שלה הוא 0, בעוד שעבור כל אחת מהסדרות המקוריות הגבול העליון הוא 1. [[משתמש:gordo6|גל]].


ההגדרה שבמערכי התרגול שונה מההגדרה של ד"ר שיין (מניחים שהפונ' מוגדרת על כל הסביבה, ולא רק שזאת נקודת הצטברות).
::אבל זה נכון אם אחת מהסדרות מתכנסת
האם במבחן מותר יהיה להשתמש בכל אחת מההגדרות?


== תרגיל 6 מדעי המחשב קריטריון קושי ==
== הרבה סדר בנוגע לגבולות עליונים ==


בשאלה 4 - האם הכוונה לשימוש במבחן ההתכנסות של קושי?
איך מוכיחים את טענת אופיר?
אם לא, האם ניתן להעלות סיכום למערכי התרגול של קריטריון קושי (+דוגמא :))?


:לא מבחן קושי. הכוונה היא להראות שסדרת הסכומים החלקיים הינה סדרת קושי - זה נקרא קריטריון קושי להתכנסות טורים. בשפה של טורים זה נראה כך:
:יש תת סדרה שמתכנסת לגבול העליון, וכל תת סדרה של נסדרה השנייה מתכנסת לגבול. אז המכפלה ביניהם שווה למכפלה בין הגבול (שהוא גם הגבול העליון) של הסדרה המתכנסת לבין הגבול העליון


:טור מקיים את קריטריון קושי אם לכל אפסילון גדול מאפס, קיים מקום בסדרה כך שהחל ממנו והלאה, לכל m>n שנבחר מתקיים <math>\Big|\sum_{i=n}^ma_i\Big|<\epsilon</math>
== קבוע בחזקת משהו ששואף ל0 ==


:--<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
האם אפשר להגיד מיד שהביטוי הנ"ל שואף תמיד ל1?
:כן, כי זו פונקציה רציפה --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== חומר לבוחן תיכוניסטים ב - 28/12 ==
== גבול של פונקציית הערך השלם ==


מתרגלים יקרים חג שמח, מהו החומר לבוחן התיכוניסטים שיתקיים ב - 28/12?
היה בבתרגיל 9 למתמטיקאים למצוא את הגבול של
תודה רבה!
פונקציית הערך השלם של 1/x * כפול x(רגיל) ובפתרון שלכם זה נפתר בעזרת גבולות חד צדדיים בספר של קון השאלה הזו מופיעה לפני הפרק של גבולות חד צדדים ז"א שניתן לפתור את זה בשיטה אחרת קדומה יותר בחומר..?
:תרגילים 4,5,6 --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== בוחן 2 ==
תודה ונ.ב האם אפשר להעלות לכאן תרגילים חיצוניים שלא הצלחתי?


בש"ב 5 נתתם משפט על גבולות חלקיים שפותר את תרגיל 2 בקלות. האם בבוחן ניתן להשתמש בו?


== תרגיל 6 שאלה 3a ==
:אפשר להוכיח לפי ההגדרה הרגילה, ואפשר להעלות תרגילים ממקומות אחרים. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


למה מציבים דווקא n=0,-1,-2?
== טיפול בסיסי בגבולות ==
:: אפשר להציב כל שלושה ערכים שרוצים כדי לקבל 3 משוואות ולמצוא את <math>A,B,C</math>. זה מה שעושים בשיטת השברים החלקיים. עם זאת נוח להציב ערכים שמאפסים בכל פעם את המקדמים של שניים מתוך שלושת המקדמים של <math>A,B,C</math>, כי אז המשוואות הרבה יותר פשוטות. כך למשל, אם מציבים n=0 מקבלים
<math>2A=1</math> וקל לראות ש <math>A=\frac{1}{2}</math> --[[משתמש:מני ש.|מני]] 21:22, 26 בדצמבר 2011 (IST)


== תת-סדרה מונוטונית ==
תהי f פונ' ותהי a נקודה כך ש- <math>\lim_{x\rightarrow a}f(x)</math> קיים. תהי g חח"ע.


אפשר דוגמא לסדרה לא-חסומה שאין לה תת-סדרה מונוטונית? (בעקבות תר' 4 שאלה 5)
איך מוכיחים (או מפריכים, מה שנראה לי לא סביר) שגם הגבול <math>\lim_{x\rightarrow g(a)}f(g^{-1}(x))</math> קיים, והם שווים?
:: אי אפשר כי לא קיימת דוגמא כזו. גם לסדרה לא חסומה בהכרח יש תת סדרה מונוטונית. לסדרה לא חסומה מלעיל קיימת תת סדרה מונוטונית עולה ממש. לסדרה לא חסומה מלרע קיימת תת סדרה מונוטונית יורדת ממש. --[[משתמש:מני ש.|מני]] 21:30, 26 בדצמבר 2011 (IST)
ההגדרה לא מביאה אותי לכלום.
:::זה מה שחשבתי, אבל אם כך אז יש לשנות את הניסוח בשאלה ההיא לטענה החזקה יותר.
:g רציפה? כי אם לא זה בוודאי ממש לא נכון. אם היא כן רציפה, החח"ע גוררת מונוטוניות לפי תכונת ערך הביניים, ואז זה בטח לא קשה להוכיח --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::איך המונוטוניות של g  ושל ההופכית שלה עוזרת?


== בוחן לתיכוניסטים מספר 2 ==
== פולינום טיילור ==


מישהו יכול לומר לי באיזה שעה יתקיים מחר הבוחן לתיכוניסטים באינפי 1 ואיפה (הבוחן של 28/12)?
נתקלתי היום בתרגיל למצוא פולינום אשר מקרב אותי לפונקציה שורש e עכשיו אנו יודעים שצריך לפתח סביב נקודה נוחה כלומר במקרה שלנו לקחנו את הפונקציה שורש x ונקודה נוחה נראית כביכול 1 או 4 אבל זה בלתי אפשרי כמעט היה לפתור עם אחד מאלה ולכן בחרתי את הנקודה 2 שהיא פחות נוחה לחישוב אבל פותרת יותר מהר, והשאלה שלי האם זה לגיטימי שעבור מספרים נוחים לחישוב אני לא יצליח לפתח ועבור מספרים פחות נוחים (אלא אם שורש 2 נחשב נוח) אצליח לפתח?


בתאריך 28/12/11 שתי כתות
תודה


== בקשר לשאלה מהמבחן של מועד א השאלה על פולינום טיילור ==


8813205 ד"ר שיין בכתה 101/1
איך הגעת ש i=3 בטווח של x בין 0 ל-1 האם אפשר פירוט?


לי יצא 4 יש מצב שיש שם טעות?


8813207 ד"ר הורוביץ בכתה 502/21
בכל אופן אם אפשר לקבל פירוט של איך הגעת לזה זה מאוד יעזור


תודה


== סכום סדרה הנדסית  ==


גם התרגיל וגם הבוחן יתקיימו באותה כתה


:עד כמה שידוע לי הבחינות בחדרים צמודים 101/1,2 --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== הבוחן ==
השאלה שלי באה לידי ביטוי בהבדל בין התשובות של שאלה 3 א' בקישור: http://math-wiki.com/index.php?title=88-132_אינפי_1_סמסטר_א%27_תשעב/פתרון_מועד_א_מתמטיקאים לבין שאלה 3 בקישור: http://math-wiki.com/images/c/c4/10Infi1Targil6.pdf


האם צריך לדעת משפטים לבוחן? או רק הגדרות?
הבנתי את זה ככה:
תודה מראש!
:איך אפשר לפתור תרגילים בלי משפטים? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>
::השאלה היא אם אצטרך לדעת את ההגדרה המדוייקת, כמו שבבוחן הקודם נתבקשתי לדעת את הגדרת הגבול במדויק. מובן שלא היה ניתן לפתור את שיעורי הבית ללא ההגדרה, אבל הניסוח במדויק (אפילו שבמקרה זה יחסית כן) לא נתבקש. אצטרך לדעת לכתוב בצורה פורמלית את מבחן ההשוואה הגבולי לדוגמה?


== בקשר להגדרת גבול של פונקצייה ==
סכום סדרה הנדסית: אם נתון לי שהטור מתכנס ומה שמתבטא בניסוח "חשבו מה הגבול" (כמו בקישור השני) מותר לי להשתמש אוטומטית בנוסחה: a1/1-q בעצם כי ידוע ש q<1
וכאשר אני נשאלת (כמו לדוג' במבחן ממועד א'-קישור ראשון) האם הטור בכלל מתכנס וה-n הרי כל הזמן משתנה. באיזה נוסחא עלי להשתמש? ומדוע?
:אני לא בטוח מה הכוונה בשאלה. כאשר הטור הוא טור הנדסי, כלומר קבוע בחזקת n, בודקים אם הקבוע קטן מאחד או לא (כפי שאמרת). אם הטור אינו הנדסי, משתמשים במבחני התכנסות אחרים... למה צריך להיות קשר בין השניים? --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


אני אישית לא מבין את ההגדרה אבל יודע לעבוד איתה אלגברית וטכנית האם זה מספיק? כאילו אפשר לא להבין אותה ופשוט לפתור טכנית? תודה...
* במה השתמשת בפתרון של מועד א' שאלה 3 סעיף א'?


==תרגיל 8 שאלה 2 מתמטיקאים==
== בקשר לבזיליקום ==


צריך להוכיח שיש גבול? אפשר להשתמש באריתמטיקה?
ארז אתה יודע אולי אם אני  מכין מקרונים אני אמור לשים את הבזיליקום בזמן הבישול של המקרונים עם המים או אחרי פשוט לפזר? תודה
או אפשר ישר להשתמש בהגדרה?

גרסה אחרונה מ־15:31, 24 בנובמבר 2016

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון

ארכיון 1

ארכיון 2

ארכיון 3

ארכיון 4

שאלות

איך מוכיחים שאין טור שמתבדר הכי לאט

כלומר לכל טור חיובי [math]\displaystyle{ \sum a_n }[/math] שמתבדר קיים טור [math]\displaystyle{ \sum b_n }[/math] מתבדר כך ש: [math]\displaystyle{ \frac{b_n}{a_n}\to 0 }[/math]

בדומה למשפט רימן, ניתן "לדחוס" ו"לפזר" את האיברי הסדרה על מנת לקבל סדרה המתכנסת יותר מהר לאפס, שהטור עליה עדיין מתבדר. למשל אפשר את האיבר הראשון לחלק ל-10 ולהפוך אותו לעשרה אברים, את האבר הבא לחלק ב100 ולהפוך אותו למאה אברים וכן הלאה. (זה לא אלגוריתם מלא כמובן) --ארז שיינר

אבל הסדרה [math]\displaystyle{ a_n }[/math] לא בהכרח יורדת

איך מוכיחים את מבחן ראבה

נראה לי לא הוכחנו אותו בכיתה

לא חשבתי על זה האמת, זה פשוט משפט ידוע --ארז שיינר

מבחן

מותר להשתמש במבחן במשפטים ממערכי התרגול/ התרגולים שלא הזכרנו בהרצאה? לגבי המשפטים וההוכחות שבאתר, לא את כולם צריך לדעת נכון? בהרצאה אמרו פחות

זו שאלה למרצים, והמשפטים הם לפי מה שהמרצים אמרו. המשפטים באתר לא קשורים לזה באופן ישיר, פשוט השתדלנו לשים גם את מה שחייבים להוכיח. אני חושב שהדבר היחיד במערכי התרגול שלא מההרצאה הוא מבחן ראבה, לא? --ארז שיינר
יש משפטים על רציפות במ"ש למשל שאם פונקציה רציפה במ"ש בכמה קטעים אז היא רציפה באיחוד שלהם ואם אני לא טועה גם זה שמכך שהנגזרת חסומה
המשפטים האלה מההרצאה עד כמה שאני יודע. --ארז שיינר

בקשר לגבולות של סדרות

אם יש לי סדרה [math]\displaystyle{ A_n }[/math] של חיוביים ומצאתי סדרה [math]\displaystyle{ B_n\gt A_n }[/math] ששואפת לאפס, האם גם [math]\displaystyle{ A_n }[/math] תשאף לאפס אם כן למה?

חוק הסנדויץ'. [math]\displaystyle{ 0\le a_n\le b_n }[/math] --ארז שיינר

חזרה על התרגילים

בתרגיל 3 שאלה 4 סעיפים א,ב,ג

האם יש קשר בין [math]\displaystyle{ a_n }[/math] כלומר אברי הסדרה an1 an2.....

ל a אליו הוא שואף?? תודה

לא, זה פשוט סימון לגבול. אפשר להחליף באות אחרת כמו L --ארז שיינר

גבול החסמים העליונים

האם מכך שידוע שגבול החסמים העליונים הוא מספר ממש נובע שהסדרה חסומה מלעיל?

אני מניח שהכוונה לגבול החסמים העליונים כאשר מחסירים איברים מהסדרה. ברגע שיש חסם עליון ממשי החל משלב מסוים זה אומר שהסדרה חסומה על ידי המקסימום בין החסם העליון הזה לבין כל האיברים שנזרקו --ארז שיינר

פתרונות למבחנים

אם אני אכתוב את הפתרונות של מבחנים שונים עם Latex ב-Word, תעלו את קובץ הוורד של הפתרונות שלי לאתר?

אם אתה כותב LaTex למה שלא תכתוב באתר? פתרונות באתר טובים בהרבה כיוון שקל לתקן אותם --ארז שיינר

אני כותב בעזרת [1] והאתר משום מה תמיד כותב לי עיבוד הנוסחה נכשל (שגיאת לקסינג), דוגמא: [math]\displaystyle{ [a_n=S_{n-1}\Delta^2] }[/math] הבעיה העיקרית היא לרדת שורה, כי אני יכול רק עם שורת הקוד [math]\displaystyle{ a_n=S_{n-1}\Delta^2 }[/math] ללא שימוש בתרגום ל-LaTex, אבל זה עובד רק אם זאת שורה אחת, משום מה זה לא קורא את ה'\\'.

קראתי חלק מ-[2] אבל לא מצאתי איך לתקן את השגיאה הזאת... ⊙_☉ מהו הקוד של ירידת שורה?

(לא ארז) הקוד הוא \\ , אבל כמו שאמרת יש בעיה בו פה.
איך עשית את ה'עיניים' בסמיילי?
תרדו שורה באופן הפשוט ביותר- תפתחו נוסחא חדשה ותכתבו אותה למטה. סה"כ הויקי אינו מסמך לאטך, אלא הוא מאפשר לכתוב נוסחאות בודדות בלאטך. תקנתי למשל את הבעיה שהוצגה לעיל, הסלאש סוגר מרובע היה מיותר. יש כמה הבדלים קטנים מ-LaTex, אבל הם לא משמעותיים כפי שאתם יכולים לראות במערכי התרגול שכולם כתובים בפורמט ויקי. --ארז שיינר

איך מוכיחים שפונקציה קמורה רציפה?

כלומר אם מתקיים [math]\displaystyle{ \forall 0\leq t\leq 1,x,x_0\colon f((1-t)x+t(x_0))\le(1-t)f(x)+tf(x_0) }[/math]

נניח בשלילה כי היא אינה רציפה, לכן לפי היינה יש לה גבולות שונים על סדרות שונות. בעזרתן תוכל לסתור את הקמירות --ארז שיינר
ואם זו אי רציפות סליקה, אזי או שהערך בנקודה גבוה מהגבול וזו סתירה לקמירות, או שהוא נמוך ואז ערכים הקרובים אליו סותרים את הקמירות אם מותחים מהערך בנקודה קו לנקודות באזור --ארז שיינר
אפשר להרחיב ? כלומר, איך מראים את זה בשימוש בנתונים הנ"ל ?
נביט שתי הסדרות השואפות לאותה נקודה, עליהן הפונקציה שואפת למקומות שונים. אחד המקומות גבוה מהשני. תיקח שתי נקודות מהסדרה הנמוכה שיש נקודה מהסדרה השנייה בניהן, אז הפונקציה תהיה מעל לקו העובר בין שתי הנקודות בנקודה השלישית, בסתירה. (תנסה לצייר את זה קודם, זה יעזור)--ארז שיינר

מתי שיעורי החזרה?

תודה

[math]\displaystyle{ \sum x^2 }[/math]

תרגיל 12 שאלה 2 C

הפתרון לא מובן לי. כיצד מתקיים השוויון הבא:

[math]\displaystyle{ \frac{-1}{2\sqrt\frac{x+1}{x-1}}\frac{2}{(x-1)^2}=\frac{(x-1)^2\sqrt{x-1}}{\sqrt{x+1}} }[/math]

יש שם טעות. --מני 18:27, 15 בפברואר 2012 (IST)
תודה רבה

תרגיל 12 שאלה 3 a

שוב הפתרון לא מובן לי. כיצד מתקיים:

[math]\displaystyle{ 2^{x^e}=e^{\log(2^{x^e})} }[/math]

זה לא אמור להיות:

[math]\displaystyle{ 2^{x^e}=e^{\ln(2^{x^e})} }[/math]

הסימון [math]\displaystyle{ \log(x) }[/math] משמש לעתים (וגם בתרגיל זה) תחליף ל- [math]\displaystyle{ \ln }[/math] כלומר ללוגריתם בבסיס [math]\displaystyle{ e }[/math] . לפעמים הוא משמש כלוגריתם בבסיס 10 (לא הפעם). אין טעות בפתרון במקרה זה. --מני 18:32, 15 בפברואר 2012 (IST)
תודה רבה

שיעורי חזרה

1)כדאי לתיכוניסטים להגיע לשיעורי החזרה של הבוגרים?

2)כדאי למי שיגיע ללואי להגיע גם למני?

הבהרה

שיעורי החזרה של לואי ומני מיועדים רק לסטודנטים שלנו ולא לתיכוניסטים (וזאת מכיוון שאנו רוצים למנוע קבוצות גדולות מדי)

יש להגיע רק לאחד מאיתנו, שכן אנחנו פותרים בדיוק את אותם התרגילים. --לואי 14:22, 16 בפברואר 2012 (IST)

אבל זה ממש נוח לנו.. שיעור החזרה שלנו נגמר בדיוק כששלך מתחיל :(

מבנה המבחן

מה מבנה המבחן? כמה זמן הוא?

אריתמטית של גבולות

אם סדרה אחת שואפת לאינסוף והאחרת לאפס, למה שואפת המנה שלהן?

לגבי טורים, האם טור מתבדר פחות טור מתכנס, מתבדר? מה לגבי ההפך?

אם הסדרה ששואפת לאפס שואפת לאפס דרך ערכים חיוביים (מה שהיינו מגדירים בפונקציות שאיפה מימין) אז המנה של השואפת לאפס חלקי זאת ששואפת לאינסוף (אני מתכוון לפלוס אינסוף) תשאף לאפס והמנה ההפוכה תשאף לאינסוף.

אם השאיפה לאפס היא דרך ערכים שליליים אז המנות ישאפו לאפס ולמינוס אינסוף בהתאמה.

יכול להיות מצב שאחת המנות לא תשאף לגבול. למשל: אינסוף חלקי סדרה ששואפת לאפס אבל נניח שמשנה סימן ואז הגבול של האינסוף חלקי הסדרה ששואפת לאפס לא יהיה קיים. כי יהיו שתי תתי סדרות ששואפת לפלוס אינסוף ולמינוס אינסוף.


טור מתבדר פחות מתכנס הוא בהכרח מתבדר. כי נניח בשלילה שהוא מתכנס אם נחבר לטור שחיסרנו שנתון שהוא מתכנס נקבל טור מתכנס בסתירה לכך שהטור שממנו חיסרנו היה מתבדר.

מתכנס פחות מתבדר גם כן מתבדר משיקולים דומים. --מני 13:06, 17 בפברואר 2012 (IST)

ערכים של טורים

האם צריך לזכור למבחן ערכים של טורים מסוימים? (לכמה הטור שווה) אם כן אלו ?(לדוגמה הטור ההרמוני המתחלף)

בפתרון של מבחן משנה שעברות כתוב: קל לראות ש bn+1/bn שואף לאינסוף ולכןbn שואף לאינסוף. למה? מה מייצג הסימן f בחזקת -1. חשבתי שאחד חלקי הפונקציה אבל לפי פתרון המבחן משנה שעברה (שאלה 7) ניראה כאילו גוזרים אותה בתור הפונקציה ההפוכה ל- [math]\displaystyle{ f }[/math]

עדיף לשאול 3 שאלות מנושאים שונים בנפרד ולא תחת נושא אחד. בכל מקרה:

לגבי השאלה הראשונה- לא. אין צורך. לגבי השאלה השלישית- הסימון מייצג את הפונקציה ההפוכה.

שאלה שניה - [math]\displaystyle{ b_n\gt 1 }[/math] ולכן [math]\displaystyle{ b_{n+1}\gt b_{n+1}/b_n }[/math] לכן אם [math]\displaystyle{ \frac{b_{n+1}}{b_n} }[/math] שואף לאינסוף אז כך גם [math]\displaystyle{ b_{n+1} }[/math] (ולכן גם [math]\displaystyle{ b_{n} }[/math]) --מני 20:07, 18 בפברואר 2012 (IST)

נגזרת ורציפות

אם f גזירה פעמיים ב- [math]\displaystyle{ [a,b] }[/math] אז הנגזרת רציפה בקטע הסגור הזה?

כן. באופן כללי גזירות בנקודה גוררת רציפות בנקודה. כמו כן גזירות ימנית (שמאלית) גוררת רציפות מימין (משמאל בהתאמה).--מני 20:09, 18 בפברואר 2012 (IST)

הגדרת החזקה - שיעור ראשון

איך מוכיחים ש [math]\displaystyle{ \sqrt[n]{x^m}=(\sqrt[n]{x})^m }[/math]?

נניח שהם שונים, נעלה את שניהם בחזקת [math]\displaystyle{ n }[/math] ונקבל סתירה, לפי החוק [math]\displaystyle{ (a^n)^m=(a^m)^n }[/math] (אותו קל להוכיח) --ארז שיינר
ציין אם זה נכון: בגלל ש- [math]\displaystyle{ n,m }[/math] הם מספרים טבעיים, נקבל שכל אחד מהאגפים שווה לפי עקרון הכפל הקומבינטורי ל- [math]\displaystyle{ a^{nm} }[/math] , ולכן לאחר ההנחה בשלילה נקבל
[math]\displaystyle{ \sqrt[n]{x^m}\ne(\sqrt[n]{x})^m\Rightarrow x^m\ne((\sqrt[n]{x})^m)^n\Rightarrow x^m\ne((\sqrt[n]{x})^{mn}=((\sqrt[n]{x})^n)^m=x^m }[/math] בסתירה.
כן. וזה נובע מכך שמספרים חיוביים שונים בחזקה חיובית נותנים תוצאה שונה, גם את זה קל להוכיח באינדוקציה - הגדול יהיה גדול יותר. --ארז שיינר

היינה באינסןף

אם [math]\displaystyle{ \lim\limits_{x\to\infty}f(x)=L }[/math] , זה אומר לפי היינה שגם [math]\displaystyle{ \lim\limits_{n\to\infty}f(n^2-n\ln(n))=L }[/math] , נכון?

נכון. --מני 12:58, 19 בפברואר 2012 (IST)

מבחן תשנ"ט שאלה 2ג.

במבחן כתוב [math]\displaystyle{ \frac{1}{\log\left(\frac{1}{n}\right)} }[/math] כאשר n מ-1 עד אינסוף. ב-1 הביטוי לא מוגדר.

נכון. בימים אלה אנחנו חוגגים בר מצווה לטעות. --מני 19:36, 19 בפברואר 2012 (IST)
זאת תשובה ממש משעשעת :) (my work here is done!)

גבולות

אם סדרה [math]\displaystyle{ a_n }[/math] שואפת למספר טבעי ממשי מאפס וסדרת [math]\displaystyle{ b_n }[/math] שואפת לאפס דרך החיוביים. [math]\displaystyle{ \frac{a_n}{b_n} }[/math] שואפת לאינסוף? או שבמנה חייב להיות מספר ממשי ולא משהו ששואף אליו?

מה הכוונה למספר ממשי "מאפס"? כלומר מהצד שקרוב יותר לאפס? בכל מקרה הגבול הזה אכן יהיה אינסוף --ארז שיינר

דוגמה 2 לטורים חיוביים

יש טעות במכנה כשמפתחים את המנה של אברים עוקבים.

מוזמן לתקן. --ארז שיינר
תיקנתי.

[math]\displaystyle{ 0^0 }[/math]

יש דוגמה לגבול מהצורה [math]\displaystyle{ 0^0 }[/math] ששואף ל-2?

[math]\displaystyle{ 2\Big(\frac{1}{n}\Big)^{\frac{1}{n}} }[/math] --ארז שיינר
לא לזה התכוונתי... רציתי שכל הביטוי יהיה רק חזקה ומעריך, כלומר שהוא יהיה מהצורה [math]\displaystyle{ 0^0 }[/math] בלבד. באותה המידה יכולת להוסיף 1.
[math]\displaystyle{ \left(\frac{1}{2^nn}\right)^{-\frac{1}{n}} }[/math] ככה? (: --ארז שיינר
כן, תודה! פשוט להכניס את ה2 לבסיס... ([math]\displaystyle{ \left(\frac{1}{2^n}\right)^{\frac{1}{n}} }[/math] זאת דוגמה יפה יותר, כי אז הביטוי יהיה קבוע למרות הצורה [math]\displaystyle{ 0^0 }[/math])

דוגמה 3 לטורים חיוביים

[[3]] התכוונתם לרשום שלפחות שני שלישים, כנראה. מה שכתוב כרגע נכון רק ל-n ששקול ל0 מודולו 3.

נוסף על כך, ההתקדמות קצת מהירה מדי (עבורי) שם - כדאי להוסיף הסבר מילולי נוסח

"נקטין את כל האברים במכפלה שגדולים מ- [math]\displaystyle{ \frac{n}{3} }[/math] , ומכיון שיש לפחות [math]\displaystyle{ \frac{2}{3}n }[/math] כאלה נקבל ש

[math]\displaystyle{ n!=1\times2\times\cdots\times\left\lfloor\frac{n}{3}\right\rfloor\times\left(\left\lfloor\frac{n}{3}\right\rfloor+1\right)\times\cdots\times n\ge1\times2\times\cdots\times\left\lfloor\frac{n}{3}\right\rfloor\times\left(\frac{n}{3}\right)^{\frac{2}{3}n}\ge\left(\frac{n}{3}\right)^{\frac{2}{3}n} }[/math]

ומכיוון ששני האגפים חיוביים ניתן להעלות בריבוע."

(לא התייחסתם, אז הוספתי.)

דוגמה 5 לטורים חיוביים

הוכחת האינדוקציה נראית לי שגויה. (מה שכתוב שם לא הגיוני)

צריך להיות פשוט [math]\displaystyle{ \frac{b_{n+1}}{b_1}=\frac{b_{n+1}}{b_n}\cdot\frac{b_n}{b_1}\ge\frac{a_{n+1}}{a_n}\frac{b_n}{b_1}\ge\frac{a_{n+1}}{a_n}\frac{a_n}{a_1}=\frac{a_{n+1}}{a_1} }[/math] (א"ש ראשון לפי הנתון, שני לפי הנחת האינדוקציה)

תוקן --ארז שיינר

טעויות במדמ"ח 11 שאלה 4

בסעיף ב' יש טעות טריגונומטרית, בסעיף ד' המעבר האחרון שגוי.

שאלה 1 א במבחן שהיה ב-2008

בשאלה כתוב הגבול של הסדרה [math]\displaystyle{ \lim_{n\to\infty}\bigg[\sqrt{n-\sqrt{n}}-\sqrt{n-\sqrt[3]{n}}\bigg] }[/math]. אפשר רמז לפתרון הגבול הזה?

תכפילו ותחלקו ב- [math]\displaystyle{ \sqrt{n-\sqrt{n}}+\sqrt{n-\sqrt[3]{n}} }[/math] .

--מני 19:17, 21 בפברואר 2012 (IST)

ואז?
מצמצמים את המונה והמכנה בביטוי "הכי גדול" כלומר ב- [math]\displaystyle{ \sqrt{n} }[/math] --מני 20:40, 21 בפברואר 2012 (IST)

פונקציות

איך באופן כללי לענות על שאלות רציפות? עם כל ההגדרות כמו שכתוב במערכי תרגול או שאפשר גם לכתוב איפה שאפשר ב"הגיון"?

לפי הגדרות ולפי משפטים בלבד --ארז שיינר

שאלה

הוכיחו כי הטור [math]\displaystyle{ \sum_{n=1}^\infty a_n }[/math] מתכנס בהחלט אם ורק אם קיים [math]\displaystyle{ C\gt 0 }[/math] כך שלכל סדרה [math]\displaystyle{ \{b_n\}_{n=1}^\infty }[/math] המקיימת כי [math]\displaystyle{ |b_n|\le1 }[/math] לכל [math]\displaystyle{ n\in\N }[/math] וכן [math]\displaystyle{ \lim_{n\to\infty}b_n=0 }[/math] מתקיים כי [math]\displaystyle{ \sum_{n=1}^\infty a_n\cdot b_n\le C }[/math]

נ"ב, אני משום מה לא מצליח לרדת שורה, למרות שאני לוחץ על אנטר. תודה

השאלה הופיע בתרגילי הבית של תשע"א: ראה פתרון של תרגיל 8.
בכיוון השני אתה יכול גם להראות שהסדרה [math]\displaystyle{ a_n }[/math] מקיימת את תנאי קושי, כך שבכל פעם תבחר סדרה מתאימה.

שאלה ממערכי תרגול - פונקציות קושי

היי ארז! מצ"ב מערך תרגול http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%95%D7%AA/%D7%92%D7%91%D7%95%D7%9C_%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94 בשאלת ההוכחה הראשונה של קושי בה צריך להוכיח שהגבול הוא שמונה, לאחר שעשינו מכנה משותף ופישטנו את הביטוי והשאפנו את איקס ל-2 מה מעיד על כך שצריך להגדיל את השבר?ו..איך מוצאים את הדלתא????

אנחנו רוצים להגדיל את כל הביטוי, ולמצוא דלתא שמבטיח שאפילו אחרי שהגדלנו הביטוי יהיה קטן מאפסילון ללא תלות באיקס. על מנת להגדיל את הביטוי אנחנו צריכים להקטין את המכנה. על מנת להקטין את המכנה אנחנו צריכים למצוא מספר גדול מאפס שקטן תמיד מהמכנה. אנחנו בוחרים דלתא שנותן לנו מספר כזה.. --ארז שיינר

בתרגיל להלן שיש לו קישור

לא ברור איך ידעת מאיפה להתחיל .. אפשר הסבר לאיך הגעת לנקודת ההתחלה מה רמז לך לזה? תודה http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%A1%D7%93%D7%A8%D7%95%D7%AA/%D7%9E%D7%95%D7%A0%D7%95%D7%98%D7%95%D7%A0%D7%99%D7%95%D7%AA


יש שם כמה תרגילים, הכוונה לראשון? כאשר אנחנו מקבלים סדרה שאנו רוצים להוכיח שהיא מתכנסת יש לנו מספר שיטות. האחת היא להראות מונוטוניות וחסימות, השנייה היא למצוא נוסחא מפורשת (קשה במקרה זה) ואחרת היא להראות תנאי קושי. אין דרך לדעת בוודאות מראש איזו שיטה עובדת, יש לנסות את כולם עד אשר מצליחים לפתור את התרגיל. --ארז שיינר
סורי שלא ציינתי זאת התכוונתי לתרגיל השני עם a1=אלפא b1=ביטא נ.ב- "לא קונה בלי תימני"
כמו בתרגילים אחרים, העצה היא להתחיל לרשום כמה איברים ראשונים של הסדרה. מהר מאד רואים שאחת עולה, השנייה יורדת, והשנייה גדולה מהראשונה. אחרי שרואים את זה ניגשים להוכיח במרץ --ארז שיינר

היינה- שאלה קטנטנה

היי, בקובץ המצורף http://math-wiki.com/images/7/7b/10Infi1Targil8Sol.pdf בשאלה 3. השאלה פשוטה עקרונית. אבל מבחינת ההוכחה יכולתי לומר שמתקיים לכל סדרה לקחת בפרט סדרה כלשהי (נגיד 1 חלקי n ) ששואפת ל-0 להפעיל עליה את f ולומר שמדובר על מכפלה של אפסית בחסום ולכן הגבול אפס. אמת?  

לא מספיק להוכיח לסדרה מסויימת, חייבים להוכיח שזה מתקיים לכל סדרה. אחרת יכול להיות שעל הנקודות של 1 חלקי n קורה משהו אחד, ועל נקודות אחרות בסביבת אפס קורה משהו אחר --ארז שיינר

הוכחה של גבול

היי, השאלה: הוכח שlimcosx=1 כאשר x שואף ל-0. בוחרים סדרה כלשהי שמתכנסת ל-0 ואז מה ניתן לעשות? תודה

תלוי מאיפה השאלה בחומר. בהרצאה הוכחנו שקוסינוס וסינוס הן פונקציות רציפות, זה נובע ישירות מהגדרת הרציפות --ארז שיינר

לא הצלחתי שאלה במבחן מסוים...

http://www.studenteen.org/inf1_exam_zalcman_2009_a.pdf תרגיל 2 ג הוכחתי שזה מתכנס בתנאי לפי דריכלה אבל אין לי רעיון עם מתכנס בהחלט...

זה לא מתכנס בהחלט. בלי הקוסינוס זה נכון לפי מבחן העיבוי, עם הקוסינוס ניתן להוכיח שקוסינוס בערך מוחלט גדול מקבוע מסויים לפחות כל פעם שנייה. הרי אם הוא קרוב לאפס, אחרי אחד הוא יתרחק ממנו. לכן זה גדול מקבוע כפול טור מתבדר ולכן מתבדר. --ארז שיינר
לא הבנתי כל כך איך אני מוכיח שזה מתכנס בתנאי...
מבחן דיריכליי, הוא רשום במפורט במערכי תרגול. אבל להבנתי אסור לכם להשתמש בזה במבחן, וכנראה לא יהיה תרגיל כזה במבחן. --ארז שיינר

לא הצלחתי לסווג את הנקודות קיצון

http://u.cs.biu.ac.il/~sheinee/tests/math/88132/4ef1a2e00a144.pdf שאלה 6 א את 0 הצלחתח בעזרת לופיטל אבל לא הצלחתי את PI/2+PK

מדובר בסוג שני. מספיק להוכיח שהגבול השמאלי ב [math]\displaystyle{ \frac{\pi}{2} }[/math] אינו סופי. (אם הוא אינסופי או לא קיים בכל מקרה מדובר בסוג שני) וזה משליך גם על כל הנקודות האחרות. מספיק להוכיח שהגבול השמאלי של המונה אינו סופי. (למה?) נניח בשלילה שהגבול סופי אזי בהכרח הגבול בין 1 למינוס 1 (נובע מערכי סינוס). נניח שהגבול הוא a. כעת ניתן להפעיל arcsin על שני האפים שהיא פונקציה רציפה בתחום הגדרתה (משתמשים כאן ברעיון של שאלה 2 מתרגיל 10) וכמו כן לזכור ש arcsinsin t=t ונקבל ש

[math]\displaystyle{ \lim_{x\to (\frac{\pi}{2})^-}tan x=arcsin a }[/math] אבל arcsin a הוא מספר סופי ומצד שני ידוע ש [math]\displaystyle{ \lim_{x\to (\frac{\pi}{2})^-}tan x=\infty }[/math] וזו סתירה להנחה.--מני 01:08, 8 באפריל 2012 (IDT)

מבחן נוסף...

http://www.studenteen.org/ חשבון אינפי 1 בחינות של שמואל קפלן קובץ 2 תרגיל 1 א

אפשר להוכיח באינדוקציה ש[math]\displaystyle{ 2^{n}\gt n^{3} }[/math] החל מn מסויים, מכאן תמשיך!

אופס קודם התבלבלתי תרגיל 1 ג

ניתן להיפטר מarcsin ע"י הצבת [math]\displaystyle{ x=sint }[/math] ואז מקבלים גבול כש [math]\displaystyle{ t }[/math] שואף לאפס

מקבלים גבול מהצורה של 1 בחזקת אינסוף. אותו אפשר לפתור ע"י הטלת ln (בסוף צריך להפעיל e בחזקת התוצאה הזו כדי לקבל את הגבול המקורי) אחרי השלב של הln פותרים בעזרת לופיטל. --מני 19:36, 8 באפריל 2012 (IDT)

אפשר רמז?

אם פונציה f 1.רציפה על [a,b] , 2. קיימת נגזרת סופית בקטע ..(למיטב הבנתי הנגזרת חסומה..) 3. הפונקציה לא לינארית..(במה בדיוק זה עוזר לי?) צ"ל שקיימת לפחות נק' אחת שבה הנגזרת יותר גדולה מהנגזרת בין a לb לפי לגראנג'..(כאילו

f(b) -f(a)/b-a< f'(c)
ברגע שהפונקציה לא ליניארית אז לא יתכן ש [math]\displaystyle{ f(x)=f(a)+(x-a)\frac{f(b)-f(a)}{b-a} }[/math]

לכל x. כלומר בהכרח קיים [math]\displaystyle{ a\lt x\lt b }[/math] כך שבמקום שוויון יש אי שוויון. אם למשל [math]\displaystyle{ f(x) }[/math] גדול מאגף ימין אז ניתן להסתכל בביטוי [math]\displaystyle{ \frac{f(x)-f(a)}{x-a} }[/math] ולהסיק ש... אם אי השוויון הוא בכיוון השני אז ניתן להתבונן ב [math]\displaystyle{ \frac{f(b)-f(x)}{b-x} }[/math] ולהסיק הדרוש. --מני 20:08, 8 באפריל 2012 (IDT)


תודה :-)

מבחן השורש של קושי לטורים חיוביים.

בהוכחת מבחן השורש לטורים חיוביים נעזרים במשפט עזר על אפייון הלימסופ, בו נאמר פחות או יותר- תהי סדרה כלשהי, אם קיים מספר כלשהו אשר גדול מהלימסופ של הסדרה, אזי קיימים לכל היותר מספר סופי של איברים..כמו כן קיים ניסוח גם למקרה ההפוך. השאלה שלי היא, האם אין צורך לדרוש את הקיום הזה לכל סדרה חסומה?

לא. זו דוגמא טובה לתנאי שמתקיים באופן ריק. אם למשל הסדרה לא חסומה מלעיל אז הגרירה: "אם קיים מספר כלשהו אשר גדול מהלימסופ של הסדרה, אזי קיימים לכל היותר מספר סופי של איברים.." היא בהכרח פסוק אמת כי הרישא היא שקרית (הלימסופ הוא אינסוף ולכן לא קיים מספר הגדול ממנו) ולכן לא משנה מה תוצאת הגרירה, הפסוק יהיה פסוק אמת. --מני 11:25, 9 באפריל 2012 (IDT)

שאלה למבחן

אפשר להשתמש בעובדה שהטור [math]\displaystyle{ \forall \alpha \in (-1,0]: \sum_{n=1}^{\infty} n^{\alpha} }[/math] מתבדר

ושהטור [math]\displaystyle{ \forall \alpha \in (-\infty ,-1]: \sum_{n=1}^{\infty} n^{\alpha} }[/math] מתכנס? או שצריך להוכיח כל פעם?

רק תיקון קל, הטור מתכנס אם [math]\displaystyle{ \alpha\lt -1 }[/math].
תיקנתי...
עקרונית כן, תשאל בזמן המבחן. אם אומרים שלא, אז תוכיח באמצעות מבחן העיבוי (קלי קלות) --ארז שיינר
קל לראות ש... - בודאי!
נו לאן הגענו ששואלים שאלה ועונים עליה עם מימי ?

תודה בכל מקרה ארז :-)

רציפות במש

x*logx היא רציפה במש? נראה לי שלא אבל לא הצלחתי למצוא סדרות שיפריכו לי

יש את הדוגמא הזו במערכי התרגול בנושא רציפות במ"ש. --מני 15:18, 10 באפריל 2012 (IDT)

האם סביר שיהיה שאלה על נקודות הצטברות במבחן?

ואם כן... מה עושים עם זה : תהי A קבוצת נקודות ממשיות. נקרא נקודה פנימית של A לנקודה a שייכת ל A עבורה יש סביבת אפסילון מוכלת(עבור אפסילון>0 כלשהו) המוכלת כולה ב- A. הוכיחו כי אם B היא קבוצה המכילה את כל נקודות ההצטברות שלה, אזי הקבוצה המשלימה שלB (שהיא R/B ) אינה מכילה אף נקודת הצטברות שאינה נקודה פנימית של R/B .

אני בספק אם תהיה שאלה בנושא. אבל, בהנחה שנקודות הצטברות נלמדו בהרצאה אני מניח שהסיכוי הוא לא אפס. איך אפשר להוכיח? ניתן להוכיח אפילו יותר- שבתנאי השאלה R\B אינה מכילה אף נקודה שאינה נקודה פנימית של R\B (בלי קשר אם הנקודה היא נק' הצטברות). נניח בשלילה שקיימת נקודה x השייכת לR\B וגם שx אינה נק' פנימית של R\B.

x אינה נק' פנימית של R\B ולכן משלילת ההגדרה של נק' פנימית נקבל שכל סביבת אפסילון של x לא מוכלת ב R\B. זה שקול לכך שהחיתוך של כל סביבת אפסילון של x עם B אינו ריק. כמו כן מכיון שx שייכת ל R\B אז לכל אפסילון > 0 בחיתוך הנ"ל שאינו ריק קיימת נקודה השונה מx. לכן עפ"י ההגדרה (או אחת השקולות) x נקודת הצטברות של B אבל הקבוצה B מכילה את כל נקודות ההצטברות שלה, ומכאן x שייכת לB בסתירה לכך ש x שייכת לR\B.--מני 15:32, 10 באפריל 2012 (IDT)

רציפות במש ועוד שאלה...

להוכיח או להפריך שxcosx רציפה במש(אני די בטוח שזה הפרכה) ולהוכיח ש:הטור an מתכנס בהחלט אם ורק אם לכל סדרה bn המתכנסת ל0 הטור anbn מתכנס הצלחתי את הכיוון של אם an מתכנס בהחלט אבל לא הצלחתי את השני טנקס!!! וגם x*sin(1/sinx) למצוא נקודות אי רציפות:מצאתי שx=pi*k זה נקודות האי רציפות ומצאתי ש0 זה נקודת אי רציות סליקה אבל בקשר לשאר הנקודות אני לא יודע


לגבי [math]\displaystyle{ xcosx }[/math] אתה בוחר שתי סדרות [math]\displaystyle{ x_n , y_n }[/math] כך שהפרשן מתכנס ל-0, אבל [math]\displaystyle{ f(x_n)-f(y_n) }[/math] לא מתכנס ל-0.

לגבי הנקודות אי רציפות אני מזכיר שאם אחד הגבולות החד צדדים הוא אינסוף, זה נקודת אי רציפות מהסוג השני. אם שני הגבולות החד צדדיים שווים, אבל בנקודה הזאת הפוקנציה לא מוגדרת, זה נקודת אי רציפות סליקה.

לגבי הטורים: מניחים שלכל סדרה [math]\displaystyle{ b_n }[/math] שמתכנסת ל-0 הטור [math]\displaystyle{ \sum a_n b_n }[/math] מתכנס, ואז אתה בוחר בחכמה את הסדרה [math]\displaystyle{ b_n }[/math] בצורה כזו שאתה מגיע ישירות מהטור [math]\displaystyle{ \sum a_n b_n }[/math] לטור [math]\displaystyle{ \sum |a_n| }[/math] . מקווה שעזרתי :-) אפשר כאילו עזרה יותר ממה שברור מאליו? אני ניסיתי איזה שעה ומשהו את זה ולא הצלחתי..

יש תשובות לכל השאלות האלה במערכי התרגול ובפתרונות תרגיל הבית מהשנה ומשנה שעברה. לגבי השאלה האחרונה, מחשבים גבולות חד צדדיים בעזרת לופיטל --ארז שיינר

מועד א' מדמ"ח שאלה 4 א'

בפתרון רשמתם ש: כיוון שגבולותיה של הנגזרת באפס ובאינסוף סופיים והיא רציפה בכל נקודה בקטע, היא חסומה בקטע.

לכן לפי משפט הפונקציה f רציפה במ"ש בקטע.

עכשיו לא לגמרי ברור לי למה הגבול באפס של הנגזרת סופי..כאילו הקוסינוס של [math]\displaystyle{ 1/x }[/math] יכול להיות כמעט כל דבר כש הx שואף לאפס..

את צודקת, הניסוח שגוי. הנגזרת היא סכום של שתי פונקציות. הקוסינוס חסומה ולפונקציה השנייה גבולות סופיים ולכן חסומה. סכום חסומות היא חסומה --ארז שיינר

מבחן דמה למתמטיקאים...

בקשר ל4 ב כאילו צריך שהנגזרת של הרציונלים תהיה שווה לנגזרת של האי רציונלים וגם שהפונקציה תהיה רציפה בנקודה? 5א אפשר רמז?

לגבי 4ב - כן. לגבי 5א - איזה אי רציפות יש לפונקציה? תחשוב על פונקציה כזו לדוגמא ותראה מה קורה בה, ואולי תבין... --ארז שיינר
הבנתי שהנקודת אי רציפות הינה מסוג שני שהגבול אינו מוגדר(כאילו לא אינסוף) אבל מה הלאה? נראה לי משהו ברציפות במש כאילו הוכחתי שהנגזרת לא יכולה להיות חסומה מלעיל וגם מלרע אבל לא רק להוכיח שהיא לא יכולה להיות רק מלרע/מלעיל
אם הפונקציה קופצת בין שני גבהים שונים היא צריכה גם לעלות וגם לרדת. --ארז שיינר
אז? כאילו אין לי שום רעיון עם זה... כאילו נגזרת חיובית ושלילית?
הנקודות בציר x מתקרבות, ובציר y מתרחקות, מה זה אומר על השיפוע? --ארז שיינר

אולי תעלה את התשובה באופן מסודר אני בחיים לא אצליח את זה וגם מלא לא מצליחים את זה...(כאילו עד עכשיו אף אחד לא פתר לי את זה)

בקשר למבחן דמה השני שאלה 5

f(x)=0 זה הרכה על א לא? כי הנגזרת היא 0 ומונוטנית וגם הפונקציה מונוטנית

נכון--ארז שיינר

שאלה לגבי המבחן

האם יהיה במבחן שאלה של גזירת פונקציות כמו שהיו במבחנים של פרופ זלצמן?

לדוגמא: גזור את הפונקציה [math]\displaystyle{ \frac{\arctan (e^{sin(x)})}{(log(x))^2} }[/math]

לא בטוח שבאופן ישיר, אבל צריך לדעת לגזור כחלק מלופיטל וכדומה --ארז שיינר

יש נגזרת כללית בטור טיילור במבחן?ואם כן אפשר לדעת אותה?

טנקס

תרגיל מת"א

איך פותרים את 8א מתרגיל 4?

שאלה לא סטנדרטית

אני מעוניין לפרמל ולהוכיח את הטענה שככל שנסתכל על טווח גדול יותר, הפונקציה [math]\displaystyle{ \sum_{k=1}^{N}sin^2(k) }[/math] תהיה קרובה יותר לישר [math]\displaystyle{ f(x)=\frac{1}{2}x }[/math].

דא עקא, אין לי קצה חוט.

(בהשראת שאלה משימושי מחשב - בדקתי עד [math]\displaystyle{ 10^6 }[/math], הטענה נכונה.)

בקשר למועד ג

האם אפשר לשאול עדיין שאלות פה? האם הפורום פועל עד למועד ג?

תודה

כן

ענו פה כן באנונימיות האם זה כן של אחד המתרגלים?

כן


שאלה כללית על הטור סיגמא 1/n

הרי ההגדרה להתכנסות של טור היא ש אם s1...sn שואפים ל-L כלומר קיים גבול סופי לסדרת הסכומים החלקיים אז הטור מתכנס ובקשר ל 1/n

זה נראה s1=1/1 s2=1/1+1/2 s3=1/1+1/2+1/3

וזה נותן הרגשה שיש התכנסות כי התוספת הולך ונהיית קטנה יותר עכשיו זה דוגמא למקרה שאני רוצה לבדוק בעזרת האינטאויציה אם טור מתבדר/מתכנס אז למקרים דומים זה אומר שפשוט לא להסתמך על האינטואיציה?

תודה

האינטואיציה שאתה מתאר היא שטורם מתכנס אם ורק אם הסדרה שלו שואפת לאפס. זה לא נכון כמו בדוגמא שהזכרת, כי הסדרה אינו יורדת מספיק מהר/חד/תלולה לאפס --ארז שיינר

האם יש פירוק יפה לביטוי

1-sqrt3(x) במילים אחד פחות שורש שלישי של איקס תודה


תנסה להתייחס לזה כאל1/3^(x-1)ואז תנסה להמשיך עם הנוסחא a^3-b^3=(a-b)*(a^2+b^2+ab בהצלחה!

קצת סדר בנוגע לגבולות עליונים

תהיינה [math]\displaystyle{ \left \{ a_n \right \},\left \{ b_n \right \} }[/math] סדרות. האם תמיד מתקיים [math]\displaystyle{ \overline{\lim}a_nb_n=\overline{\lim }a_n \; \overline{\lim }b_n }[/math] , כשהגבולות הנ"ל קיימים?

לא בהכרח. קח [math]\displaystyle{ a_n=0; b_n=1 }[/math] לכל n זוגי ו-[math]\displaystyle{ a_n=1; b_n=0 }[/math] לכל n אי זוגי. המכפלה היא סדרה שקבועה על אפס, לכן הגבול העליון שלה הוא 0, בעוד שעבור כל אחת מהסדרות המקוריות הגבול העליון הוא 1. גל.
אבל זה נכון אם אחת מהסדרות מתכנסת

הרבה סדר בנוגע לגבולות עליונים

איך מוכיחים את טענת אופיר?

יש תת סדרה שמתכנסת לגבול העליון, וכל תת סדרה של נסדרה השנייה מתכנסת לגבול. אז המכפלה ביניהם שווה למכפלה בין הגבול (שהוא גם הגבול העליון) של הסדרה המתכנסת לבין הגבול העליון

קבוע בחזקת משהו ששואף ל0

האם אפשר להגיד מיד שהביטוי הנ"ל שואף תמיד ל1?

כן, כי זו פונקציה רציפה --ארז שיינר

גבול של פונקציית הערך השלם

היה בבתרגיל 9 למתמטיקאים למצוא את הגבול של פונקציית הערך השלם של 1/x * כפול x(רגיל) ובפתרון שלכם זה נפתר בעזרת גבולות חד צדדיים בספר של קון השאלה הזו מופיעה לפני הפרק של גבולות חד צדדים ז"א שניתן לפתור את זה בשיטה אחרת קדומה יותר בחומר..?

תודה ונ.ב האם אפשר להעלות לכאן תרגילים חיצוניים שלא הצלחתי?


אפשר להוכיח לפי ההגדרה הרגילה, ואפשר להעלות תרגילים ממקומות אחרים. --ארז שיינר

טיפול בסיסי בגבולות

תהי f פונ' ותהי a נקודה כך ש- [math]\displaystyle{ \lim_{x\rightarrow a}f(x) }[/math] קיים. תהי g חח"ע.

איך מוכיחים (או מפריכים, מה שנראה לי לא סביר) שגם הגבול [math]\displaystyle{ \lim_{x\rightarrow g(a)}f(g^{-1}(x)) }[/math] קיים, והם שווים? ההגדרה לא מביאה אותי לכלום.

g רציפה? כי אם לא זה בוודאי ממש לא נכון. אם היא כן רציפה, החח"ע גוררת מונוטוניות לפי תכונת ערך הביניים, ואז זה בטח לא קשה להוכיח --ארז שיינר
איך המונוטוניות של g ושל ההופכית שלה עוזרת?

פולינום טיילור

נתקלתי היום בתרגיל למצוא פולינום אשר מקרב אותי לפונקציה שורש e עכשיו אנו יודעים שצריך לפתח סביב נקודה נוחה כלומר במקרה שלנו לקחנו את הפונקציה שורש x ונקודה נוחה נראית כביכול 1 או 4 אבל זה בלתי אפשרי כמעט היה לפתור עם אחד מאלה ולכן בחרתי את הנקודה 2 שהיא פחות נוחה לחישוב אבל פותרת יותר מהר, והשאלה שלי האם זה לגיטימי שעבור מספרים נוחים לחישוב אני לא יצליח לפתח ועבור מספרים פחות נוחים (אלא אם שורש 2 נחשב נוח) אצליח לפתח?

תודה

בקשר לשאלה מהמבחן של מועד א השאלה על פולינום טיילור

איך הגעת ש i=3 בטווח של x בין 0 ל-1 האם אפשר פירוט?

לי יצא 4 יש מצב שיש שם טעות?

בכל אופן אם אפשר לקבל פירוט של איך הגעת לזה זה מאוד יעזור

תודה

סכום סדרה הנדסית

השאלה שלי באה לידי ביטוי בהבדל בין התשובות של שאלה 3 א' בקישור: http://math-wiki.com/index.php?title=88-132_אינפי_1_סמסטר_א%27_תשעב/פתרון_מועד_א_מתמטיקאים לבין שאלה 3 בקישור: http://math-wiki.com/images/c/c4/10Infi1Targil6.pdf

הבנתי את זה ככה:

סכום סדרה הנדסית: אם נתון לי שהטור מתכנס ומה שמתבטא בניסוח "חשבו מה הגבול" (כמו בקישור השני) מותר לי להשתמש אוטומטית בנוסחה: a1/1-q בעצם כי ידוע ש q<1 וכאשר אני נשאלת (כמו לדוג' במבחן ממועד א'-קישור ראשון) האם הטור בכלל מתכנס וה-n הרי כל הזמן משתנה. באיזה נוסחא עלי להשתמש? ומדוע?

אני לא בטוח מה הכוונה בשאלה. כאשר הטור הוא טור הנדסי, כלומר קבוע בחזקת n, בודקים אם הקבוע קטן מאחד או לא (כפי שאמרת). אם הטור אינו הנדסי, משתמשים במבחני התכנסות אחרים... למה צריך להיות קשר בין השניים? --ארז שיינר
  • במה השתמשת בפתרון של מועד א' שאלה 3 סעיף א'?

בקשר לבזיליקום

ארז אתה יודע אולי אם אני מכין מקרונים אני אמור לשים את הבזיליקום בזמן הבישול של המקרונים עם המים או אחרי פשוט לפזר? תודה