88-132 אינפי 1 סמסטר א' תשעג/תרגילים תיכון: הבדלים בין גרסאות בדף

מתוך Math-Wiki
 
(25 גרסאות ביניים של 4 משתמשים אינן מוצגות)
שורה 1: שורה 1:
==בחנים==
*'''בוחן ראשון:'''
*[[88-132 אינפי 1 סמסטר א' תשעג/תרגילים תיכון/בוחן לדוגמא|בוחן לדוגמא]]
*[[בוחן 1 - אינפי 1 - תיכונוסיטים - תשעג|הבוחן+תשובות]]
*[[מדיה: 12Infi1Bohan1Grades.pdf|ציוני הבוחן הראשון]]
*'''בוחן שני:'''
*[[88-132 אינפי 1 סמסטר א' תשעג/תרגילים תיכון/בוחן שני לדוגמא|בוחן לדוגמא]]
*[[מדיה:פתרון בוחן 2 אינפי 1 תיכוניסטים.pdf|הבוחן+תשובות]]
*[[מדיה: 12Infi1Bohan2Grades.pdf|ציוני הבוחן השני]]
==תרגיל 1==
==תרגיל 1==
[[88-132 אינפי 1 סמסטר א' תשעג/תרגילים תיכון/1|תרגיל 1 - ערך מוחלט, אי שיוויונים, אינדוקציה]]
[[88-132 אינפי 1 סמסטר א' תשעג/תרגילים תיכון/1|תרגיל 1 - ערך מוחלט, אי שיוויונים, אינדוקציה]]
שורה 5: שורה 21:


==תרגיל 2==
==תרגיל 2==
[[מדיה: 11Infi1Targil2.pdf|תרגיל 2]]
[[מדיה: 11Infi1Targil2.pdf|תרגיל 2 - חסמים]]


  [[מדיה: sol2Infi12011.pdf|פתרון 2]]
  [[מדיה: sol2Infi12011.pdf|פתרון 2]]
שורה 23: שורה 39:
==תרגיל 6==
==תרגיל 6==
[[מדיה: 10Infi1Targil6.pdf|תרגיל 6 - טורים חיוביים]]
[[מדיה: 10Infi1Targil6.pdf|תרגיל 6 - טורים חיוביים]]
[[מדיה:10Infi1Targil6Sol.pdf|פתרון 6]]


==תרגיל 7==
==תרגיל 7==
[[מדיה: 10Infi1Targil7.pdf|תרגיל 7 - עוד טורים]]
[[מדיה: 10Infi1Targil7.pdf|תרגיל 7 - עוד טורים]]
[[מדיה:10Infi1Targil7Sol.pdf|פתרון 7]]
==תרגיל 8==
[[מדיה: 10Infi1Targil8.pdf|תרגיל 8]]
'''תיקון לתרגיל''': במקום שאלה 8-
תהי הפונקציה
::<math>f(x)=\begin{cases}h(x)&x\in\mathbb{Q}\\g(x)&x\notin\mathbb{Q}\end{cases}</math>
הוכח כי אם לפונקציות h,g יש את אותו הגבול בנקודה a אזי קיים ל f גבול בנקודה a
[[מדיה:10Infi1Targil8Sol.pdf|פתרון 8]]
==תרגיל 9==
[[מדיה: 10Infi1Targil9.pdf|תרגיל 9 - גבולות, רציפות ואי רציפות]]
  [[מדיה:10Infi1Targil9Sol.pdf| פתרון 9]]

גרסה אחרונה מ־17:45, 20 ביוני 2013

בחנים

תרגיל 1

תרגיל 1 - ערך מוחלט, אי שיוויונים, אינדוקציה

פתרונות ניתן למצוא בתרגילים הרלוונטים במכינה

תרגיל 2

תרגיל 2 - חסמים

פתרון 2

תרגיל 3

תרגיל 3 - גבול סדרה

פתרון 3

תרגיל 4

תרגיל 4 - מונוטוניות

פתרון 4

תרגיל 5

תרגיל 5 - המספר e, גבולות חלקיים

תרגיל 6

תרגיל 6 - טורים חיוביים

פתרון 6

תרגיל 7

תרגיל 7 - עוד טורים

פתרון 7

תרגיל 8

תרגיל 8

תיקון לתרגיל: במקום שאלה 8-

תהי הפונקציה

[math]\displaystyle{ f(x)=\begin{cases}h(x)&x\in\mathbb{Q}\\g(x)&x\notin\mathbb{Q}\end{cases} }[/math]

הוכח כי אם לפונקציות h,g יש את אותו הגבול בנקודה a אזי קיים ל f גבול בנקודה a

פתרון 8

תרגיל 9

תרגיל 9 - גבולות, רציפות ואי רציפות

  פתרון 9