שיחה:88-132 סמסטר א' תשעא: הבדלים בין גרסאות בדף

מתוך Math-Wiki
 
(441 גרסאות ביניים של 64 משתמשים אינן מוצגות)
שורה 14: שורה 14:
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 10| ארכיון 10]]
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 10| ארכיון 10]]
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 11| ארכיון 11]]
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 11| ארכיון 11]]
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 12| ארכיון 12]]
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 13| ארכיון 13]]
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 14| ארכיון 14]]
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 15| ארכיון 15]]


=שאלות=
=שאלות=


== הערה בקשר למבחן ביום שני ==


== תרגיל 10 שאלה 5 ==
אני תלמיד של מיכאל שיין ולא היה לנו תרגול אחד על חתכי דדקינד בכל הסמסטר ואני בספק אם מישהו יודע איך לפתור את התרגילים בנושא חתכי דדקינד.
אני לא בטוח בשאלה הזאת כי אני לא מבין בדיוק מה הכוונה בכל שהפונקציה רציפה במידה שווה כי כשאומרים שהיא רציפה במ"ש גם "הקצוות" שלה כוללים את כל הסביבה או לא? כלומר האם היא תופסת את הסביב מימין ומשמאל??


רועי
אשמח אם תתחשבו בנו.


:יש הגדרה ברורה לרציפות במ"ש. לפי התרגיל, הפונקציה מקיימת את התנאים של רציפות במ"ש בקטע. יש להוכיח שהיא רציפה בקטע (בקצוות מספיק להראות שהיא רציפה מצד אחד, כלומר הגבול החד צדדי שלה שווה לערך שלה בקצה הקטע) --[[משתמש:ארז שיינר|ארז שיינר]] 05:46, 25 בדצמבר 2010 (IST)
:מצטרפת. לא היו שיעורי בית בנושא, בהרצאה לא פתרנו תרגילים, ואין במיזלר. אשמח אם תענו לי למטה על השאלה לגבי חתכי דדקינד.


== תרגיל 10 שאלה 1 ==


אני חושב שיש טעות בתרגיל שכן,
מצטרף גם.. אין לנו מושג איך לגשת לתרגילים האלו כי אף פעם לא הראנו לנו איך לפתור תרגילים כאלה.. אפשר להעלות חומר ללימוד או לפחות פתרון לתרגיל שאדווארד העלה לאתר:
http://sites.google.com/site/eduardkontorovich/


בתרגיל מבקשים להוכיח או להפריך שהפונקציה קבועה.
אני חושב שכמעט אף אחד בקבוצה לא יודע לפתור תרגילים כאלה..
::ואם מישהו יודע (ולא נראה לי), אז הוא בטוח למד ממקור נוסף שאני לא מכירה.


אבל ברור שאפשר להגדיר פונקציה שנותנת כפלט ערך רציונלי כש x ב (a,b) ושנותנת כפלט ערך לא רציונלי
http://dl.dropbox.com/u/2237179/infi1dedekind.pdf


בכל שאר הישר.(וכך בעצם מתקבלת פונקציה לא קבועה שכן היא משתנה בשלושה מקומות בין הערך הרציונלי לערך האי רציונלי).
== שאלה בקשר למבחן ביום שני ==


יכול להיות שהשאלה היא האם הפונקציה קבועה בתחום (a,b)?
מישהו יכול בבקשה לפרט אילו שאלות עלולות להופיע במבחן באינפי 1 ביום שני? יופיעו שאלות חישוביות?
תודה.
:תלוי באיזו קבוצה אתה. אם אתה אצל התיכוניסטים, מבנה המבחן הוא כדלקמן:
:יש שש שאלות ואין בחירה ביניהן, סה"כ זמן המבחן שעתיים וחצי. כל שאלה 18 נקודות = סה"כ 108 נקודות.
:תהיה שאלה על סדרות, על טורים, על פונקציות (גבולות וכדומה), רציפות/רציפות במ"ש, נגזרות ויישמון של נזגרות (טיילור, לופיטל וכו...). עבור תלמידיו של ד"ר שיין - יהיו חתכי דדקינד במקום ישומי הנגזרות.
:כל מה שנכתב כאן נאמר על ידי ד"ר הורוביץ.
:[[משתמש:Gordo6|גל א.]]
::לא בדיוק - גם בקבוצה של שיין לופיטל בחומר.


:הכוונה היא ב(a,b), הרי אנחנו לא יודעים כלום על הפונקציה מעבר לתחום הזה. --[[משתמש:ארז שיינר|ארז שיינר]] 18:33, 24 בדצמבר 2010 (IST)
== שאלה על פתרון שאלה ==


== משפט ==
תרגיל 10 (http://www.math-wiki.com/images/d/db/10Infi1Targil10Sol.pdf) שאלה 2- כתבתם שקיים M כך ש fx<M>-אמ. אבל אז בפונקציה g לקחתם את הערך 1/M+1 - והרי איך אפשר לדעת בוודאות שהפונקציה רציפה בו (צריך שהיא תהיה רציפה כדי להשתמש במשפט ערך הביניים)? אם f חסומה בין שליש למינוס שליש, אז 1/M+1 הוא 4, והפונקציה מ2 ל4 לא בהכרח רציפה!
:אפשר לקחת M גדול כרצוננו, הרי זה חסם. אם היא חסומה על ידי שליש, היא בוודאי גם חסומה על ידי אחד --[[משתמש:ארז שיינר|ארז שיינר]] 13:58, 29 בינואר 2011 (IST)
::אוקי.


האם מותר להשתמש במשפט- <math>\lim_{x\rightarrow 0}\frac{\sin x}{x}= 1</math>?
== עזרה בשאלה ממבחן ==
:כן, כמו שרשום לעיל. --[[משתמש:ארז שיינר|ארז שיינר]] 18:34, 24 בדצמבר 2010 (IST)


== תרגיל 9 שאלה 6 ==
תהי {an} כך שלכל K טבעי <math>a_{2k+1}-a_{2k-1}<0 \and a_{2k+2}-a_{2k}>0</math>, וגם ש <math>lim_{n->infinity}a_{n+1}-a_n=0</math>. הוכח שהסדרה מתכנסת. תודה!


נקודות אי הרציפות הן רק בתחום ההגדרה נכון? למשל בסעיף a, הנקודה x=0 יכולה להיות נקודת אי רציפות?
:יש תת סדרה מונוטונית עולה, ותת סדרה מונוטונית יורדת. אתה צריך להראות ששתיהן חסומות ולכן מתכנסות, ואחר כך שבהכרח לאותו הגבול. --[[משתמש:ארז שיינר|ארז שיינר]] 13:55, 29 בינואר 2011 (IST)
גם אשמח לרמז לגבי איך אמורים למצוא נקודות אי רציפות, כי רוב הפונקציות שמה לא הצלחתי למצוא להן נקודות אי רציפות.
::הבנתי אותך. רק לא הצלחתי להוכיח שהתת סדרות חסומות. אפשר עזרה?
ושאלה אחרונה- לא צריך להוכיח שלפונקציה אין עוד נקודות רציפות חוץ מאלה שמצאתי, נכון?
:::הסדרה העולה חייבת להיות קטנה מהסדרה היורדת. אם הן היו עוברות אחת את השנייה, ההפרש בין שני איברים עוקבים לא היה יכול לשאוף לאפס. --[[משתמש:ארז שיינר|ארז שיינר]] 17:06, 29 בינואר 2011 (IST)
תודה
::::אוקי..


===תשובה===
== עזרה בשאלה נוספת ממבחן ==
נקודת אי הגדרה, היא בפרט נקודת אי רציפות. יש למצוא את '''כל''' נקודות אי הרציפות, לכן יש להוכיח שהשאר רציפות.


בגדול משתמשים בעובדה שהרכבה וחלוקה של רציפות בנקודה היא רציפה בנקודה, אלא אם המכנה הוא אפס או הפונקציה אינה מוגדרת. --[[משתמש:ארז שיינר|ארז שיינר]] 18:35, 24 בדצמבר 2010 (IST)
יהי n טבעי, נניח f מוגדרת וגזירה n פעמים בסביבת 0, ו f0=f'0=f''0=..=f^(n-1)(0)=0 (נגזרות ב0)., f^(n)(0)=5. חשב <math>lim_{x->0}(fx/(sin2x)^n)</math>. תודה מראש
:אז לכל אחת מהפונקציות בשאלה אני צריך גם להוכיח שלא קיימות עוד נקודות רציפות? זה לא קצת יותר מדי? בנוסף, אני לא חושב שאני יודע איך מוכיחים רציפות עבור אינסוף נקודות! ולגבי נקודות אי ההגדרה, אז אם פונקציה לא מוגדרת למשל כאשר x<0, אז כל נקודה x<0 היא גם נקודת אי רציפות?
:אני מניח שלקחת את השאלה הזו מתוך מבחן של ד"ר הורוביץ (עשיתי אותה לפני כעשר דקות). שים לב לרמז שמופיעה מתחתיה (כאשר x->0 יתקיים ש sinx/x->1), היעזר בו למציאת פונקציה שתהיה במכנה שתהיה נוחה לגזירה, והשתמש בכלל לופיטל n פעמים. מקווה שעזרתי, [[משתמש:Gordo6|גל א.]]
::הסברתי איך מוכיחים. חלוקה או הרכבה של רציפות. זה בדיוק משפט אחד (והרי ידוע על רוב הפונקציות הנתונות מתי הן רציפות ומתי הן מוגדרות). לרוב אנחנו לא נותנים שאלות עם אינסוף נקודות רציפות אבל '''ברור''' שפונקציה אינה רציפה בנקודות בהן אינה מוגדרת... --[[משתמש:ארז שיינר|ארז שיינר]] 20:23, 24 בדצמבר 2010 (IST)
::לא הבנתי איך אפשר להשתמש ברמז כדי לפתור את התרגיל- גזרתי את הפונקציה עם לופיטל N פעמים ואף פעם לא היה "x" - רק סינוס, קוסינוס ודברים שקשורים לn. לא הבנתי מה זה אומר למה התכוונת כשאמרת להיעזר בו כדי למצוא פונקציה במכנה נוחה לגזירה.
:::<math>Lim\frac{f(x)}{(sin2x)^n}=Lim\frac{f(x)}{(2x)^n}*\frac{(2x)^n}{(sin2x)^n}=...=Lim\frac{f(x)}{(2x)^n}</math> כל הגבולות כאשר איקס שואף לאפס. כעת הפונקציה במכנה "נוחה לגזירה". מה הנגזרת ה-nית שלה? הפעל את כלל לופיטל עבור הנגזרת ה-nית, קבל מסקנה עבור הנגזרת ה-(n-1) והפעל את הכלל שוב ושוב עד שתקבל מסקנה על הפונקציה המקורית. מקווה שעזרתי, [[משתמש:Gordo6|גל א.]]
::::נראה לי שהבנתי. האם הפתרון הוא 5 חלקי N עצרת כפול 2 בחזקת N?
:::::אכן.


== תרגיל 9- שאלה 2 ==
== רציפות במ"ש ==


הפתרונות אמורים להיות שורה אחת, או שלא הבנתי משהו?
מישהו יכול לעזור לי למצוא שתי סדרות כדי להפריך רציפות במ"ש של פונקציות xsinx xcosx?
:<math>f(x)=xsinx</math> ו<math>x_n=2\pi k, y_n=2\pi k + \frac{1}{k}</math>. אזי <math>f(y_n)-f(x_n)=2\pi k sin(\frac{1}{k}) + \frac{1}{k}sin(\frac{1}{k}) \rightarrow 2\pi + 0 \neq 0</math> --[[משתמש:ארז שיינר|ארז שיינר]] 17:11, 29 בינואר 2011 (IST)


:תלוי מה השורה הזו. אפשר להשתמש בגבולות ידועים, במשפטי אריתמטיקה והרכבה וכדומה. --[[משתמש:ארז שיינר|ארז שיינר]] 18:38, 24 בדצמבר 2010 (IST)
== קירוב ליניארי ==


== תרגיל 9 שאלה 3 ==
היי ארז,


מהי ה'''הגדרה''' של הגבול של <math>f(2x)-f(x)</math> כש-x שואף לאינסוף לפי קושי? ולפי היינה? והאם מותר להשתמש באריתמטיקה של גבולות?
באחד המבחנים ביקשו להגדיר את הקירוב הליניארי ולהסביר את חשיבותו....


:מה זאת אומרת? זו בדיוק אותה הגדרה עבור פונקציה כללית <math>g(x)</math> כאשר מגדירים <math>g(x)=f(2x)-f(x)</math>. מותר להשתמש באריתמטיקה אם אתה יודע את הגבולות של <math>f(x),f(2x)</math> --[[משתמש:ארז שיינר|ארז שיינר]] 21:05, 24 בדצמבר 2010 (IST)
איך מגדירים זאת בצורה מדוייקת ומה ההסבר הנדרש פה?


::תודה!
תודה!


== כולל אינסוף? ==
:אני לא בטוח למה הוא מכוון בשאלה, עניתי על זה בתרגיל החזרה. מגדירים את זה בצורה מדוייקת (יש את הנוסחא בדפי התרגיל) ולדעתי ההסבר הוא שניתן כך להעריך פונקציות מבלי להיות מסוגלים לחשב אותן במפורש כאשר אנו כן יודעים לחשב את הפונקציה ואת הנגזרת קרוב לערך המבוקש. --[[משתמש:ארז שיינר|ארז שיינר]] 16:56, 29 בינואר 2011 (IST)


בכל הגבולות שמדובר עליהם בתרגילים האלו, האם זה כולל גבול של אינסוף ומינוס אינסוף?
== עזרה בפתרון שאלה ==


הן בגבולות שאנחנו צריכים למצוא, והן בגבולות שנתון למשל שהגבול שווה ל-a.
שאלתי את השאלה קודם, אך אני לא בטוח שהפתרון שנתנו לי נכון, לכן אבקש, ארז, אם תוכל, לבדוק שהפתרון שנתנו אכן נכון. הנה השאלה [[http://math-wiki.com/index.php?title=%D7%A9%D7%99%D7%97%D7%94:88-132_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90'_%D7%AA%D7%A9%D7%A2%D7%90#.D7.A2.D7.96.D7.A8.D7.94_.D7.91.D7.A4.D7.AA.D7.A8.D7.95.D7.9F_.D7.A9.D7.90.D7.9C.D7.94]]. תודה!


:כשצריך למצוא יוצא מה שיוצא. אם זה מתכנס במובן הרחב לאינסוף יש להראות את זה. גבול בנקודה a הוא גבול בנקודה ממשית ולא באינסוף. --[[משתמש:ארז שיינר|ארז שיינר]] 21:47, 24 בדצמבר 2010 (IST)
:לא קראתי את הפתרון הזה, אבל פתרתי את זה בכיתה בשיעור החזרה. אם a_n אינה קושי, אז היא אינה מתכנסת ולכן הגבול החלקי העליון והתחתון שלה שונים, לכן יש לה תת סדרה ששואפת לעליון ותת סדרה ששואפת לתחתון. ניתן לכן לבנות תת סדרה אחרת כך שאיברים הזוגיים שלה יהיו מהראשונה והאיבריים האי זוגיים שלה יהיו מהשנייה. עבור תת סדרה זו, <math>\lim |a_{n_{k+1}}-a_{n_k}| = \limsup - \liminf \neq 0</math> בסתירה. --[[משתמש:ארז שיינר|ארז שיינר]] 16:52, 29 בינואר 2011 (IST)
::תודה.


== תרגיל 9 שאלה 4 ==
== מישפט היינה בורל  ==


מה זה אומר: "פונקציה ממשית"? היא יכולה לשאןף לאינסוף כש-x שואף לאינסוף?
מישהוא יכול ליכתוב אותו בבקשה
:"יהי <math>K</math> קטע סגור, ויהיו <math>\{I_a\}_{a\ in\ A}</math> קטעים פתוחים ב-<math>\R</math> כך ש-<math>K</math> מוכל ממש באיחוד של כולם. אזי קיים מספר סופי של קטעים כאלו כך ש-<math>K</math> מוכל ממש בתוך האיחוד שלהם". (אני לא הייתי בהרצאה הזו, זה מתוך מחברת שצילמתי ממישהו). מקווה שעזרתי [[משתמש:Gordo6|גל א.]]


:פונקציה ממשית היא למעשה הפונקציה העיקרית שאנו מדברים עליה. פונקציה <math>f:\mathbb{R}\rightarrow\mathbb{R}</math>. בוודאי שהיא יכולה לשאוף לאינסוף, את כל הגבולות של פונקציות הגדרה בכלל על פונקציות ממשיות. --[[משתמש:ארז שיינר|ארז שיינר]] 16:21, 25 בדצמבר 2010 (IST)
תודה פשוט בוויקפדיה זה רשום  בצורה קצת פחות פורמלית


== תרגיל 9 שאלה 5 ==
אולי יש לכה במיקרה גם את המישפט של בולצאנו ויירשטראס לקבוצות
:"תהי <math>S</math> קבוצה המוכלת ממש בממשיים, קבוצה אינסופית אך גם חסומה. אזי קיימת לה נקודת הצטברות". מקווה שעזרתי, [[משתמש:Gordo6|גל א.]]
::אגב, אני לומד אצל ד"ר הורוביץ. אם אתה לא לומד אצלו, ייתכן שהמרצה שלך ניסח את זה קצת אחרת, אבל בסופו של דבר זה אותם משפטים.
:::בולצאנו-ויירשטראס זה לא זה שלכל סדרה חסומה יש תת סדרה מתכנסת?
::::אני מנחש שהוא מתכוון לגרסא: "לכל קבוצה אינסופית וחסומה יש נקודות הצטברות" --[[משתמש:ארז שיינר|ארז שיינר]] 19:26, 30 בינואר 2011 (IST)


הגעתי לזה שלכל <math>\mu>0</math> קיים <math>\epsilon>0</math> כך ש-<math>0<|f(x)-a|<\epsilon</math> גורר <math>|g(f(x))-g(a)|<\mu</math>,
== עזרה בבדיקת היתכנסות הטור ==


וגם לזה שלכל <math>\epsilon>0</math> קיים <math>\delta>0</math> כך ש-<math>0<|x-x_0|<\delta</math> גורר <math>|f(x)-a|<\epsilon</math>.
<math>\sum \frac{(2n)!}{(2n)^{2n}}</math>
:{{לא מתרגל}} מתכנס, אני מיד אכתוב למה.
:{{הערה|חזרתי:}}
{|
{{=|l=\overline{\lim_{n\to\infty} }\frac{(2n+2)!/(2n+2)^{2n+2} }{(2n)!/(2n)^{2n} }
  |r=\overline{\lim}\frac{(2n)!(2n+1)(2n+2)(2n)^{2n} }{(2n)!(2n+2)^{2n}(2n+2)^2 }
}}
{{=|r=\lim\left(\frac{2n+1}{2n+2}\cdot\left(\frac{2n}{2n+2}\right)^{2n}\right)
}}
{{=|r=\lim\frac{2n+1}{2n+2}\ \cdot\ \lim\left(\left(1+\frac1n\right)^n\right)^{-2}
}}
{{=|r=1\cdot e^{-2}
}}
{{=|r=1
  |o=<
}}
|}
:והודות לד'אלמבר הטור (שהוא טור חיובי) מתכנס. {{משל}}
פשש  זה בדיוק מה שלא ראיתי החלק של המנה שמיתכנס ל e תודה רבה


אז בעצם לכל <math>\mu>0</math> קיימים <math>\delta,\epsilon>0</math> כך ש-<math>0<|x-x_0|<\delta</math> גורר <math>|f(x)-a|<\epsilon</math> וכל מה שאני צריכה זה להשתמש בזה ש-<math>0<|f(x)-a|<\epsilon</math> גורר <math>|g(f(x))-g(a)|<\mu</math>, ומ.ש.ל,
== בקשה ==


אבל <math>|f(x)-a|<\epsilon</math> ולא בהכרח <math>0<|f(x)-a|<\epsilon</math>. אז מה עושים??
שלום רב,
למישהו יש מושג איך לפתור את שאלה 1א במבחן הזה: http://www.studenteen.org/inf1_exam_blei_2008_a.pdf
תודה מראש!
:{{לא מתרגל}} יש לי רעיון מתחכם, אבל יקח לי קצת זמן לכתוב אותו.
::יש סיכוי שתכתוב אותו כאן בכל זאת היום או מחר? תודה מראש!
:::{{לא מתרגל}}הרעיון הכללי - נוכיח שזה שואף לאינסוף. לשם כך מוכיחים שהטור <math>\sum \frac{2^n n! (4n)^n}{(4n)!}</math> מתכנס (מבחן ד'אלמבר), לכן <math>\frac{2^n (n!) (4n)^n}{(4n)!}\to0</math> ולכן (מכיוון שהסדרה הזו חיובית), <math>\frac{(4n)!}{2^n (n!) (4n)^n}\to\infty</math>. אח"כ, מכיוון ש-<math>\forall n\in\mathbb N:\ \binom{3n}{n}\ge1</math>, מתקיים <math>\forall n\in\mathbb N:\ \sqrt[n]{\binom{3n}{n}}\ge1</math> ולבסוף נקבל שהסדרה הכללית מתכנסת במובן הרחב לאינסוף. {{משל}}
::::או, זה יפה ^^


עזרה? תודה מראש!
== שאלה אלמנטרית ==


:עלה לי רעיון להפריד למקרים, ונראה לי שזה עובד. אז לא משנה.
המרצה שלנו כתב בתחילת הקורס: P בריבוע זוגי -> P זוגי. זה כנראה נכון רק כאשר P שלם. יש לזה הוכחה קלה?


== האם זה מותר? ==
:גם אני חיפשתי הוכחה עוד מזמן, והגעתי למסקנה שההוכחה היא פשוט של-p בריבוע יש את כל הגורמים של p, פעמיים. אז אם הוא זוגי זה אומר שיש לו את הגורם 2. נניח בשלילה של-p אין את הגורם 2. אבל ל-p בריבוע יש את הגורם 2, לכן חייב להיות ל-p את שורש 2. בסתירה לכך שהוא שלם. לכן יש ל-p את הגורם 2 כלומר הוא זוגי.


אני לא מצליחה לנסח מתמטית את החוק, אז אתן דוגמה: האם <math>limxsin(1/x)=lim(siny/y)</math>, כש- <math>y=1/x</math>, בגבול הראשון x שואף לאינסוף, ובגבול השני y שואף ל-0?
::זה נכון עבור שלמים, אחרת אין משמעות לזוגי. זה נובע מחומר שהוא לא של הקורס הזה. יש משפט שאומר שאם ראשוני מחלק את ab אז הוא מחלק את a או מחלק את b, לכן אם 2 מחלק את aa=a^2 סימן שהוא מחלק את a. --[[משתמש:ארז שיינר|ארז שיינר]] 13:08, 30 בינואר 2011 (IST)


כלומר האם מותר להציב y שיהיה תלוי ב-x ולראות לאן הוא שואף...
:::ואני הופתעתי שלא מצאתי דרך מתמטית להוכחה אפילו שהמרצה כתב "קל להוכיח ש...".


ואם כן, אז מהו החוק בניסוח מתמטי?
== חתכי דדקינד ==
: מה הבעיה לכתוב ככה? xsin1/x = (sin1/x)/(1/x)h כאן זה ש-x שואף לאינסוף.. אבל הגבול של זה.. שווה לגבול של sinx/x כאשר x שואף ל-0, כי הרי אחד חלקי איקס שואף ל-0... אני לא חושבת שזה ממש חוק.... זה פשוט לשנות את הביטוי למשהו שאת יודעת לעבוד איתו..


::כן, תודה, זה מה שגם אני חושבת, אבל לא הוכחנו שזה מותר, והרי צריך להוכיח כל דבר (אם הוכחנו אפילו ש-<math>0*a=0</math>, אז..). אשמח לתשובת מתרגל/ת.
לקבוצה של ד"ר שיין תהיה במבחן שאלה על חתכי דדקינד. הבעיה היא שלא היה תרגול בנושא, וגם אין שאלות עם תשובות במיזלר או בכל מקום אחר שבו חיפשתי.


:(לא מתרגל)מותר לבצע הצבות בחישוב הגבול באופן הנ"ל על פי משפט שהוכחנו: גבול של פונקציה מורכבת. [[משתמש:לידור.א.|-לידור.א.-]] 19:52, 25 בדצמבר 2010 (IST)
שיין מסר 3 תרגילים בנושא, אבל אין לי מושג לאיזה פתרון הוא מצפה. כלומר, מה הכוונה "שפה של חתכי דדקינד"? אפשר בבקשה לראות פתרון של אחת או כמה מהשאלות הבאות: http://sites.google.com/site/eduardkontorovich/home/%D7%94%D7%9B%D7%A0%D7%94%D7%9C%D7%9E%D7%91%D7%97%D7%9F.pdf?attredirects=0&d=1 בבקשה ותודה רבה מראש!
:מצטרף, במיוחד אם אפשר את הפתרון לשאלה 1 (הפתרון היחיד שאני מצאתי הוא "שסדרת החסמים העליונים של An מתכנסת", אבל סדרת החסמים העליונים של An היא בעצם סדרת הממשיים הנוצרים ע"י החתכים, כלומר לא אמרתי כלום בפתרון הזה.)


== צמצום פונקציה ==
::לי בפתרון חשוב במיוחד לראות את הנימוקים והניסוח, כלומר ה"שפה" של דדקינד. אז למרות שאני חושבת שאני יודעת את התשובה הסופית של 1, יעזור לי מאוד מאוד לראות פתרון מלא של 100 במבחן. אז התשובה, כלומר התנאי, הוא: לכל אפסילון חיובי קיים N כך שלכל n טבעי גדול מ-N, מתקיים שהקבוצה <math>A_n/A_{L-\epsilon}</math> מוכלת ב-<math>(L-\epsilon,L)</math>. בעצם שינוי של ההגדרה של ההתכנסות.
:::התבלבלת, מה זה An/A_L-e?
::::לא התבלבלתי, זה הקבוצה <math>A_n</math> בלי הקבוצה <math>A_{L-\epsilon}</math>. תיזכר בסימונים של בדידה.
:::::אוקי.. אבל אני לא רואה איך התנאי פה קשור להתכנסות של סדרת המספרים. אולי תסבירי מה הכוונה פה. אבל בעצם, הרעיון הזה של לקחת את תנאי ההתכנסות למספרים ולהעתיק אותו לחתכים הוא רעיון ממש טוב, נראה לי שהוא יכול לעבוד. בזכות הרעיון שלך פתרתי את זה כך: צריך לעשות קודם כמה הכנות. נגדיר: חתך A הוא "חיובי" אם המס' שמייצר אותו (תמיד קיים) גדול מאפס, או במילים אחרות שכל מספר שקטן nאפס שייך לA (כנ"ל עם שלילי, אי שלילי וכו'). (הערה- כשאני אומר חתך A אני מתכוון לחתך A,A'). כמו כן "A-" הוא החתך שמייצר את המספר הנגדי לA, והרי הוכחנו בכיתה שלכל מספר ממשי יש נגדי ושכל מספר מיוצר ע"י חתך יחיד (כי אם המספר רציונלי, ניקח תמיד חתך מהסוג הראשון, ואם המספר אי רציונלי ניקח חתך מהסוג השלישי), ולכן ההגדרה טובה, ולבסוף נגדיר "|A|" כ-A אם A חיובי וכ- A- אם A שלילי, וב0 ברור. כעת התנאי יהיה שאם לכל אפסילון גדולה E (חתך) חיובית (גדולה מאפס=חיובית כמו שהגדרתי) קיים N כך שלכל n>N מתקיים שהחתך |An-L| מוכל בחתך E. (שוב, החלק השמאלי של החתך), אז סדרת החתכים מתכנסת לL. עכשיו רק צריך להוכיח שזה תנאי הכרחי ומספיק. אולי אנסה בהמשך ואגיד לך אם יש תוצאות..


האם צריך לנמק שהגבול של <math>(x^2-4)/(x-2)</math> שווה לזה של <math>x+2</math>? (זו סתם דוגמה במקום שאלה כללית) ואיך מנמקים?
:בדיוק איך שהגעת לזה שזה שווה לגבול של x+2... הרי x^2-4 = (x-2)(x+2( j ואז אתה פשוט מצמצם...... ובעצם יוצא שזה שווה ל- x+2
לא הבנתי מה השאלה..


::התכוונתי, האם צריך לנמק שהגבול של הפונקציה אחרי צמצום שווה לגבול המקורי. הרי עבור <math>f(x)=(x^2-4)/(x-2)</math>, <math>g(x)=x+2</math>, טעות להגיד ש-<math>f(x)=g(x)</math>.
http://dl.dropbox.com/u/2237179/infi1dedekind.pdf
:לא הבנתי אף אחד מהפתרונות שלו ואני גם לא בטוח שהם נכונים.
'''מי כתב את הפתרון הזה?'''
::זה מה ששיין שלח לתלמידים שלו במייל. תודה שיין, אבל זה כל כך לא בסדר ומלחיץ שלא פתרנו תרגילים כאלו קודם...


== נקודות אי רציפות==
== בפתרון למבחן של זלצמן 2010 ==


נאבד לי הדף עם המיון, האם זה:
כתוב בפיתרון לשאלה 5.ג
ש<<math>e^{(x^2)}</math> רציפה במ"ש.


1. סוג ראשון: קיים גבול מימין ומשמאל אבל הם שונים
למה זה נכון?


2. סוג שני: לפחות גבול חד צדדי אחד - לא קיים
:זה לא נכון, וגם לא רשום שם. רשום שם שהיא רציפה, ובגלל שסינוס גם רציפה, ההרכבה רציפה ומחזורית ולכן '''ההרכבה''' רציפה במ"ש. --[[משתמש:ארז שיינר|ארז שיינר]] 13:12, 30 בינואר 2011 (IST)


3. נקודת סליקה: הפונקציה לא מוגדרת בנקודה זו
== כלל לופיטל ==


אם כך, נקודה אחת יכולה להיות מכמה סוגים?
כלל לופיטל הוא בחומר של הקבוצה של שיין?
:למדנו את זה אז כנראה שכן...


: סליקה: הגבולות החד צדדים שווים אבל הנקודה לא מוגדרת או פשוט הערך של הפונקציה בנקודה שונה מהגבול בנקודה, זה שהפונקציה לא מוגדרת בנקודה לא הופך אותה לסליקה... יכול להיות נקודה ממין ראשון או שני שהפונקציה לא מוגדרת בנקודה..... ולא, לא יכול להיות שהגבולות החד צדדים בנקודה מסויימת גם שווים גם שונים וגם שאחד מהם או שניהם לא קיימים.... (אני לא בטוחה ב-100% במה שאני אומרת, אבל ככה ניראה לי בכל אופן)
== כלל לופיטל ==


::תודה!!
האם אפשר להשתמש בכלל לופיטל כדי למצוא גבולות בקצוות כאשר בודקים רציפות במ"ש של פונקציה?


:לדעתי כן, מומלץ לשאול את המרצה או המתרגל בעת המבחן בנוסף. --[[משתמש:ארז שיינר|ארז שיינר]] 13:24, 30 בינואר 2011 (IST)


===תשובה===
== מבחני קושי ודלמבר ==


# סליקה - הגבול קיים וסופי בנקודה אבל שונה מערך הפונקציה בנקודה (או שהפונקציה אינה מוגדרת בנקודה)
מבחן קושי הוא עם limsup בשני המקרים (התכנסות והתבדרות) ומבחן דלמבר הוא עם limsup במקרה של התכנסות ו liminf במקרה של התבדרות, או שיש לי טעות? תודה!
# מין ראשון - הגבולות החד צדיים קיימים, סופיים ושונים בנקודה
:אין טעות. תסתכל על ההוכחות שלהם ותבין למה.
# מין שני - כל אופציה אחרת


== חקירת פונקציות, המבחן של ד"ר הורוביץ ==


::סתם מתוך סקרנות, למה לא חיפשת [http://he.wikipedia.org/wiki/%D7%A0%D7%A7%D7%95%D7%93%D7%AA_%D7%90%D7%99_%D7%A8%D7%A6%D7%99%D7%A4%D7%95%D7%AA בוויקיפדיה]?
צריך לזכור בעל-פה את הסדר של הסעיפים בחקירת פונקציות? (תחום הגדרה ונקודות אי רציפות, האם הפונקציה זוגית/אי-זוגית/לא זה ולא זה, אסימפטוטות, תחומי עלייה+ירידה+נקודות קריטיות, תחומי קעירות+קמירות+נקודות פיתול, טבלת ערכים)<br/>או שזה כתוב במבחן?
:הוא אמר שלא בטוח שהוא יכתוב את זה. אבל הוא גם אמר שאין חובה לעשות לפיהסדר שהוא רשם אם כל הסעיפים כלולים. [[משתמש:Gordo6|גל א.]]


:::שאלה טובה. כנראה כי יצאתי מתוך נקודת הנחה שאני זוכרת את ההגדרות (גם מישהו שדיברתי איתו אמר לי אותו הדבר), אז לא הרגשתי צורך לחפש. אולי מישהו מהפקולטה לפסיכולוגיה ידע להסביר טוב יותר :]
== [[מדיה:10Infi1TargilFinalGrades.pdf|ציונים]] ==


== תרגיל 9- שאלה 3 ==
מספר תעודת הזהות שלי (312491822), ואפילו לא מספר דומה לו, לא מופיע בדף הציונים שפורסם היום. אתם יכולים לבדוק את זה? תודה רבה
:יתכן ואתה תיכוניסט? אלו ציונים רק לתלמידים של זלצמן.
::כן, תיכוניסט. תודה
:::הציונים של התיכוניסטים שאדוארד מתרגל מופיעים באתר שלו: sites.google.com/site/eduardkontorovich


L ממשי?
== איקס בריבוע ==


:ראה קישור: [[http://math-wiki.com/index.php/%D7%A9%D7%99%D7%97%D7%94:88-132_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90'_%D7%AA%D7%A9%D7%A2%D7%90#.D7.9B.D7.95.D7.9C.D7.9C_.D7.90.D7.99.D7.A0.D7.A1.D7.95.D7.A3.3F]]
איך מוכיחים ש-<math>x^2</math> לא רציפה במ"ש? תודה.
:{{לא מתרגל}}ראה [[מדיה:10Infi1Targil8Sol.pdf|פתרון תרגיל 8]], שאלה 9.
לא ענית לי על השאלה. שם ענו על:גבולות שצריך למצוא, גבול בנק' ממשית. אבל לא על גבול כמו ב3.
::תודה.


::ציטוט משם: "גבול בנקודה a הוא גבול בנקודה ממשית ולא באינסוף." (תחליף את a ב-L)
== שאלה קלה מדי? ==


בתרגיל 3, L הגבול, לא הנק'.
צ"ל או להפריך שאם הטור an מתכנס והטור bn מתבדר אז הטור an+bn מתבדר. לכאורה אפשר להניח בשלילה שהטור an+bn מתכנס, ואז הטור an + הטור bn מתכנס (*), לכן הטור an ועוד הטור bn פחות הטור an = הטור bn מתכנס, בסתירה. אבל ב-(*) הזזנו את המקום של אינסוף איברים, ולכן ההוכחה לא מספיקה. מה לעשות? (ניסיתי לרפד באפסים כמו שכתוב ב[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 15#משפט רימן|ארכיון 15]])
:מישהו יודע?


:אוקיי אז מסתבר שארז לא ענה לי על השאלה ששאלתי שם, טוב שהפנת את תשומת ליבי. אז אני מצטרפת לשאלה שלך!
== פתרון של הבחינות ==


::L ממשי. --[[משתמש:ארז שיינר|ארז שיינר]] 19:58, 25 בדצמבר 2010 (IST)
הי ארז,


== תרגיל 9 שאלה 2 סעיף ג ==
ראשית תודה שהעלת לנו את הפתרון לבחינות כל כך מהר. יתכן ששאלתי לא במקום משום שאני לא לומד אצל זלצמן - אבל מה עם הפתרון לשאלות 3 ו-6 בבחינה שלו? הן היו שאלות של ציטוט משפטים?


אני לא מצליחה אותו, אפשר אולי רמז, כיוון, משהו?
אגב, אולי לבחינות של התיכוניסטים כדאי להוסיף הבהרה ששאר השאלות שלא פורסם להן פתרון היו בבחינה של זלצמן (שאלה 1 של הורוביץ = שאלה 1 של זלצמן, שאלה 2 של הורוביץ = שאלה 7 של זלצמן, שאלה 4 של הורוביץ = שאלה 4 של זלצמן, שאלה 5 של הורוביץ = שאלה 2 של זלצמן). כמו כן כדאי להוסיף שהבחינה של ד"ר שיין זהה לבחינה של ד"ר הורוביץ, למעט בשאלה 6 שעסקה בחתכי דדקינד.


:גבולות ידועים שהוזכרו פה בפורום כמה פעמים (אפשר להסתכל בארכיון האחרון. --[[משתמש:ארז שיינר|ארז שיינר]] 19:59, 25 בדצמבר 2010 (IST)
כעת שאלה לגבי הפתרונות עצמם: בשאלה 5ג (של זלצמן) כתבת ששורש איקס רציפה בכל הממשיים, אבל זה כמובן לא נכון כי היא מוגדרת רק בממשיים החיוביים. האם יש דרך אחרת להוכיח רציפות במ"ש בסעיף זה בלי להתבסס על טענה זו?


::תודה! מוזר שזה גבול ידוע, לי הוא לא היה ידוע.
שוב תודה על פרסום הפתרונות (במיוחד עבור המבחן של ד"ר הורוביץ שזה בכלל לא מובן מאליו).
::רגע, זה מותר בכלל לכתוב: <math>lim((f(x))/sinx)=lim(f(x))/lim(sinx)=lim(f(x))/lim(x)=lim((f(x))/x)</math>??
 
:::לא. אם המכנה שואף לאפס אי אפשר להפעיל אריתמטיקה של גבולות. --[[משתמש:ארז שיינר|ארז שיינר]] 23:47, 25 בדצמבר 2010 (IST)
 
== שאלה בקשר לנקודות אי רציפות וגבולות חד צדדיים ==
 
אם אחד מהגבולות החד צדדיים הוא אינסוף, זה נחשב שהוא קיים או לא? לדוגמה אם יש פונקציה עם נקודה שבה אחד מהגבולות החד צדדים ממשי והשני אינסוף (אסימפטוטה), אז זה נחשב נקודת אי רציפות מהסוג הראשון (הגבול קיים) או מהשני (לא קיים)? ואם יש פונקציה שבה משני הצדדים הגבולות החד צדדיים שואפים לאינסוף (החיובי), זה נחשב סליקה כי הגבולות החד צדדיים קיימים או סוג שני? תודה!!
 
:לדעתי, ויכול להיות שאני טועה, הדבר הראשון שאמרת הוא סוג ראשון (אינסוף=קיים), והדבר השני שאמרת הוא סליקה (שוב, אינסוף=קיים).
 
:: אהמ.. ניראה לי דוקא שאם גבול חד צצדי הוא אינסוף זה נחשב שהוא לא קיים.... כי הוא לא ממשי. ואם יש גבול חד צצדי1 ממשי והשני אינסוף זה נקודת אי רציפות מהמין השני... וגם אם 2 הגבולות החד צדדים הם אינסוף זה נקודות אי רציפות מהמין השני... אני לא בטוחה במליון אחוז אבל ב-99 אני כן :)
 
:::ראו למעלה הגדרה - סליקה ומין ראשון זה רק כאשר קיים ו'''סופי'''. אם יש צד אחד בו הפונקציה שואפת לאינסוף אז זה מין שני. --[[משתמש:ארז שיינר|ארז שיינר]] 20:01, 25 בדצמבר 2010 (IST)
::::תודה.
 
== שאלה כללית ==
 
אם פונקציה קבועה באינסוף נקודות וגם לא מוגדרת באינסוף נקודות. הגבול שלה הוא הקבוע?
 
:תלוי הגבול איפה.
 
באינסוף.
 
:(לא מתרגלת) מה הפונקציה? תלוי בפונקציה, אם <math>f(x)=a</math> לכל <math>x>0</math> ולא מוגדר אחרת, אז באינסוף הגבול הוא a. ואם זה לכל <math>x<0</math>, אז באינסוף הגבול לא מוגדר.
 
נניח שעבור x זוגי ֿ מוגדר ועבור אי זוגי לא.
 
:מה ז"א זוגי, זאת פונקציה, הערכים בתחום לא בהכרח שלמים. ועבור סדרה כזו - הגבול לא קיים.


===תשובה===
===תשובה===
על מנת לדבר בכלל על גבול, דורשים שהפונקציה תהיה מוגדרת. בגבול בנקודה דורשים שהפונקציה תהיה מוגדרת בסביבה מנוקבת, בגבול באינסוף דורשים שהפונקציה תהיה מוגדרת החל מM מסויים. --[[משתמש:ארז שיינר|ארז שיינר]] 20:02, 25 בדצמבר 2010 (IST)
שאלה 3 הייתה ציטוט משפטים, שאלה 6 עסקה בנגזרות, ושאלה 8 הייתה להוכיח את משפט קנטור - לא כתבתי להן פתרונות, כמו כן לא כתבתי פתרון לשאלה על חתכי דדיקינד.
 
:ואם היא לא מוגדרת ומדברים על גבול בכל זאת? אז הוא לא מוגדר (לא קיים) - לא?
::אז הגדרת הגבול לא מתקיימת = לא קיים
 
== תרגיל 9 שאלה 2 סעיף b ==
 
ההוכחה הבאה תקינה <math>lim_{x->-\infty}x(x-\sqrt{x^2-\pi^3})=-\infty(-\infty-\sqrt{\infty^2-\pi^3})=-\infty(-\infty-\infty)=(-\infty)^2=\infty</math>?
 
:כן, זה בסדר.
 
== תרגיל 10 שאלה 6. C. ==
 
אורך הקטע הוא b-a נחלק  במספר הקטעים נגיד k ואז אורך כל קטע הוא b-a\k שזה קטן מדלתא. אם נבטא את חלקי הקטע באמצעות קצוותיו אז X1 וX2 יהיו קצות הקטע וx1-x2 (בערך מוחלט) קטן מדלתא. לכן fx1-fx2 (בערך מוחלט) קטן מ-1 שזה בודאי קטן מ-k.
אבל זה נכון רק לנקודות שהן קצוות של חלק מהקטע כאשר חולק באופן שווה, איך ניתן להוכיח לכל x1 x2 , האם בכלל זה הכיוון?
 
:ראשית <math>x_1,x_2</math> לא חייבים להיות בקצוות, התנאי בסעיף הקודם אומר שהמרחק בינהם צריך להיות קטן מדלתא, לא שווה לדלתא. שנית, אם המרחק בינהם קטן מפעמיים דלתא, מה אפשר לומר על המרחק בין <math>f(x_1),f(x_2)</math>? --[[משתמש:ארז שיינר|ארז שיינר]] 23:45, 25 בדצמבר 2010 (IST)
 
== תרגיל 10 שאלה7 (c) ==
 
היי
רציתי לדעת האם ה-2 הוא בטוח מחוץ לסגריים או שזאת טעות וזה צריך להיות (2dx-1) בריבוע?
 
:זה היה צריך להיות בפנים, אבל תענו על זה כמו שזה... --[[משתמש:ארז שיינר|ארז שיינר]] 09:39, 27 בדצמבר 2010 (IST)
 
== ערעור על ש"ב ==
 
בתרגיל 3, שאלה 5, סעיף ה' (הוכח או הפרך: אם <math>\lim_{n\to\infty}a_n=0</math> אזי <math>b_n=\left|\frac 1{a_n}\right|</math> מתכנסת במובן הרחב לאינסוף.) הפרכתי את הטענה ע"י בחירת <math>a_n=0</math> לכל <math>n\in\mathbb N</math> (לכן <math>b_n</math> אינה מוגדרת ולפיכך אין לה גבול). הבודק הוריד לי על זה ציון וכתב אחרי הערעור "הטענה הזו נכונה, ולא מופרכת כפי שציינת." עם זאת, ב[[מדיה: 10Infi1Targil3Sol.pdf|פתרון]] באתר הוכחתם את הטענה כאשר מניחים ש-<math>a_n\ne0</math> החל מ-n מסויים והפרכתם ללא ההנחה הזו, שאכן לא צויינה בשאלה המקורית. האם יש מקום לערעור שני? תודה
 
:כן, תשלח לי במייל האישי כמה הוא הוריד לך, ואני אדאג שהוא יעלה את הניקוד. --[[משתמש:ארז שיינר|ארז שיינר]] 18:10, 27 בדצמבר 2010 (IST)
 
:: (מישהי אחרת) אפשר לשלוח לך מייל גם אם אתה לא מתרגל אותי בקורס הזה? ומה המייל?
::: תלוי מה יש במייל (: אני erez_sh בהוטמייל נקודה קום.
::::ערעור על אותו הדבר בדיוק. (פניתי למתרגל שלי, והוא אישר העלאה של 5 נקודות, אבל אמר שאני צריכה לפנות אליו שוב כשיביא את הקלסר עם הציונים או משהו כזה.. אז אני מעדיפה לדאוג לזה עכשיו)
 
== תרגיל 11 ==
 
שלום רב,
מתי יעלה תרגיל 11?
תודה מראש!
 
:היום.
 
== תרגיל 11 שאלה 2 ==
 
בתרגיל 2 הכוונה לרציפות במ"ש בקטע סופי?
 
:אממ... שיהיה בקטע כלשהו, זה לא ממש משנה. --[[משתמש:ארז שיינר|ארז שיינר]] 14:21, 29 בדצמבר 2010 (IST)
 
== שאלה אל רציפות במ"ש ==
 
פונקציה מחזורית רציפה במידה שווה בגלל שהיא חסומה? האם כל הפונקציות מחזוריות רציפות במ"ש?
 
:לא. חסימות לא גורר רציפות במ"ש. יש משפט שפונקציה מחזורית שרציפה בכל הממשיים היא רציפה במ"ש. --[[משתמש:ארז שיינר|ארז שיינר]] 16:22, 29 בדצמבר 2010 (IST)
 
== שאלה ==
 
האם ההרכבה של פונקציה מחזורית אל פונקציה שאינה מחזורית היא גם מחזורית?
 
== תרגיל 10 שאלה 4 ==
 
בקשר לזה שצריך שהפונקציה תהיה חסומה מלעיל ומלרע בקטע [0,1) - אז העובדה שהפו' צריכה להיות רציפה גם ב1 עצמו לא סותר את זה שהיא תהיה חסומה? כי כל הפונקציות שאני מוצא שמתאימות לתרגיל, יש להן אסימפטוטות ב0 (שבו שהפו' שואפת למינוס אינסוף) וב1 (שבו הפו' שואפת לאינסוף), אבל העובדה שצריך שהפו' תהיה רציפה גם ב 1 עצמו הורסת את הדוגמאות הנגדיות מכיוון שהפונקציות ששואפות לאינסוף ב1, לא מוגדרות ב1. אפשר עזרה/הכוונה לגבי העניין הזה? תודה!
 
== תרגיל 11-שאלה 4, סעיף A ==
 
האם הרכבה של פונק' לא רציפה על פונק' רציפה,בהכרח לא רציפה?


== תרגיל 10- שאלה 6 - סעיף c ==
לגבי 5ג, לא צריך ששורש איקס יהיה רציף במ"ש על כל הממשיים, אלא רציף במ"ש בתמונה של הפונקציה עליה הוא מורכב - במקרה זה הערך המוחלט ותמונתו <math>[0,\infty)</math> ולכן זה פתרון תקין.


בטוח שצריך להיות קטן שווה ולא קטן ממש? (בכל מקרה, תמיד מותר לי להגיד שאם a קטן ממש מ-b הוא גם קטן שווה ל-b, נכון?)
====תשובה====
אוקי, שוב תודה :-)

גרסה אחרונה מ־15:34, 5 בפברואר 2011

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון


שאלות

הערה בקשר למבחן ביום שני

אני תלמיד של מיכאל שיין ולא היה לנו תרגול אחד על חתכי דדקינד בכל הסמסטר ואני בספק אם מישהו יודע איך לפתור את התרגילים בנושא חתכי דדקינד.

אשמח אם תתחשבו בנו.

מצטרפת. לא היו שיעורי בית בנושא, בהרצאה לא פתרנו תרגילים, ואין במיזלר. אשמח אם תענו לי למטה על השאלה לגבי חתכי דדקינד.


מצטרף גם.. אין לנו מושג איך לגשת לתרגילים האלו כי אף פעם לא הראנו לנו איך לפתור תרגילים כאלה.. אפשר להעלות חומר ללימוד או לפחות פתרון לתרגיל שאדווארד העלה לאתר: http://sites.google.com/site/eduardkontorovich/

אני חושב שכמעט אף אחד בקבוצה לא יודע לפתור תרגילים כאלה..

ואם מישהו יודע (ולא נראה לי), אז הוא בטוח למד ממקור נוסף שאני לא מכירה.

http://dl.dropbox.com/u/2237179/infi1dedekind.pdf

שאלה בקשר למבחן ביום שני

מישהו יכול בבקשה לפרט אילו שאלות עלולות להופיע במבחן באינפי 1 ביום שני? יופיעו שאלות חישוביות? תודה.

תלוי באיזו קבוצה אתה. אם אתה אצל התיכוניסטים, מבנה המבחן הוא כדלקמן:
יש שש שאלות ואין בחירה ביניהן, סה"כ זמן המבחן שעתיים וחצי. כל שאלה 18 נקודות = סה"כ 108 נקודות.
תהיה שאלה על סדרות, על טורים, על פונקציות (גבולות וכדומה), רציפות/רציפות במ"ש, נגזרות ויישמון של נזגרות (טיילור, לופיטל וכו...). עבור תלמידיו של ד"ר שיין - יהיו חתכי דדקינד במקום ישומי הנגזרות.
כל מה שנכתב כאן נאמר על ידי ד"ר הורוביץ.
גל א.
לא בדיוק - גם בקבוצה של שיין לופיטל בחומר.

שאלה על פתרון שאלה

תרגיל 10 (http://www.math-wiki.com/images/d/db/10Infi1Targil10Sol.pdf) שאלה 2- כתבתם שקיים M כך ש fx<M>-אמ. אבל אז בפונקציה g לקחתם את הערך 1/M+1 - והרי איך אפשר לדעת בוודאות שהפונקציה רציפה בו (צריך שהיא תהיה רציפה כדי להשתמש במשפט ערך הביניים)? אם f חסומה בין שליש למינוס שליש, אז 1/M+1 הוא 4, והפונקציה מ2 ל4 לא בהכרח רציפה!

אפשר לקחת M גדול כרצוננו, הרי זה חסם. אם היא חסומה על ידי שליש, היא בוודאי גם חסומה על ידי אחד --ארז שיינר 13:58, 29 בינואר 2011 (IST)
אוקי.

עזרה בשאלה ממבחן

תהי {an} כך שלכל K טבעי [math]\displaystyle{ a_{2k+1}-a_{2k-1}\lt 0 \and a_{2k+2}-a_{2k}\gt 0 }[/math], וגם ש [math]\displaystyle{ lim_{n-\gt infinity}a_{n+1}-a_n=0 }[/math]. הוכח שהסדרה מתכנסת. תודה!

יש תת סדרה מונוטונית עולה, ותת סדרה מונוטונית יורדת. אתה צריך להראות ששתיהן חסומות ולכן מתכנסות, ואחר כך שבהכרח לאותו הגבול. --ארז שיינר 13:55, 29 בינואר 2011 (IST)
הבנתי אותך. רק לא הצלחתי להוכיח שהתת סדרות חסומות. אפשר עזרה?
הסדרה העולה חייבת להיות קטנה מהסדרה היורדת. אם הן היו עוברות אחת את השנייה, ההפרש בין שני איברים עוקבים לא היה יכול לשאוף לאפס. --ארז שיינר 17:06, 29 בינואר 2011 (IST)
אוקי..

עזרה בשאלה נוספת ממבחן

יהי n טבעי, נניח f מוגדרת וגזירה n פעמים בסביבת 0, ו f0=f'0=f0=..=f^(n-1)(0)=0 (נגזרות ב0)., f^(n)(0)=5. חשב [math]\displaystyle{ lim_{x-\gt 0}(fx/(sin2x)^n) }[/math]. תודה מראש

אני מניח שלקחת את השאלה הזו מתוך מבחן של ד"ר הורוביץ (עשיתי אותה לפני כעשר דקות). שים לב לרמז שמופיעה מתחתיה (כאשר x->0 יתקיים ש sinx/x->1), היעזר בו למציאת פונקציה שתהיה במכנה שתהיה נוחה לגזירה, והשתמש בכלל לופיטל n פעמים. מקווה שעזרתי, גל א.
לא הבנתי איך אפשר להשתמש ברמז כדי לפתור את התרגיל- גזרתי את הפונקציה עם לופיטל N פעמים ואף פעם לא היה "x" - רק סינוס, קוסינוס ודברים שקשורים לn. לא הבנתי מה זה אומר למה התכוונת כשאמרת להיעזר בו כדי למצוא פונקציה במכנה נוחה לגזירה.
[math]\displaystyle{ Lim\frac{f(x)}{(sin2x)^n}=Lim\frac{f(x)}{(2x)^n}*\frac{(2x)^n}{(sin2x)^n}=...=Lim\frac{f(x)}{(2x)^n} }[/math] כל הגבולות כאשר איקס שואף לאפס. כעת הפונקציה במכנה "נוחה לגזירה". מה הנגזרת ה-nית שלה? הפעל את כלל לופיטל עבור הנגזרת ה-nית, קבל מסקנה עבור הנגזרת ה-(n-1) והפעל את הכלל שוב ושוב עד שתקבל מסקנה על הפונקציה המקורית. מקווה שעזרתי, גל א.
נראה לי שהבנתי. האם הפתרון הוא 5 חלקי N עצרת כפול 2 בחזקת N?
אכן.

רציפות במ"ש

מישהו יכול לעזור לי למצוא שתי סדרות כדי להפריך רציפות במ"ש של פונקציות xsinx xcosx?

[math]\displaystyle{ f(x)=xsinx }[/math] ו[math]\displaystyle{ x_n=2\pi k, y_n=2\pi k + \frac{1}{k} }[/math]. אזי [math]\displaystyle{ f(y_n)-f(x_n)=2\pi k sin(\frac{1}{k}) + \frac{1}{k}sin(\frac{1}{k}) \rightarrow 2\pi + 0 \neq 0 }[/math] --ארז שיינר 17:11, 29 בינואר 2011 (IST)

קירוב ליניארי

היי ארז,

באחד המבחנים ביקשו להגדיר את הקירוב הליניארי ולהסביר את חשיבותו....

איך מגדירים זאת בצורה מדוייקת ומה ההסבר הנדרש פה?

תודה!

אני לא בטוח למה הוא מכוון בשאלה, עניתי על זה בתרגיל החזרה. מגדירים את זה בצורה מדוייקת (יש את הנוסחא בדפי התרגיל) ולדעתי ההסבר הוא שניתן כך להעריך פונקציות מבלי להיות מסוגלים לחשב אותן במפורש כאשר אנו כן יודעים לחשב את הפונקציה ואת הנגזרת קרוב לערך המבוקש. --ארז שיינר 16:56, 29 בינואר 2011 (IST)

עזרה בפתרון שאלה

שאלתי את השאלה קודם, אך אני לא בטוח שהפתרון שנתנו לי נכון, לכן אבקש, ארז, אם תוכל, לבדוק שהפתרון שנתנו אכן נכון. הנה השאלה [[1]]. תודה!

לא קראתי את הפתרון הזה, אבל פתרתי את זה בכיתה בשיעור החזרה. אם a_n אינה קושי, אז היא אינה מתכנסת ולכן הגבול החלקי העליון והתחתון שלה שונים, לכן יש לה תת סדרה ששואפת לעליון ותת סדרה ששואפת לתחתון. ניתן לכן לבנות תת סדרה אחרת כך שאיברים הזוגיים שלה יהיו מהראשונה והאיבריים האי זוגיים שלה יהיו מהשנייה. עבור תת סדרה זו, [math]\displaystyle{ \lim |a_{n_{k+1}}-a_{n_k}| = \limsup - \liminf \neq 0 }[/math] בסתירה. --ארז שיינר 16:52, 29 בינואר 2011 (IST)
תודה.

מישפט היינה בורל

מישהוא יכול ליכתוב אותו בבקשה

"יהי [math]\displaystyle{ K }[/math] קטע סגור, ויהיו [math]\displaystyle{ \{I_a\}_{a\ in\ A} }[/math] קטעים פתוחים ב-[math]\displaystyle{ \R }[/math] כך ש-[math]\displaystyle{ K }[/math] מוכל ממש באיחוד של כולם. אזי קיים מספר סופי של קטעים כאלו כך ש-[math]\displaystyle{ K }[/math] מוכל ממש בתוך האיחוד שלהם". (אני לא הייתי בהרצאה הזו, זה מתוך מחברת שצילמתי ממישהו). מקווה שעזרתי גל א.

תודה פשוט בוויקפדיה זה רשום בצורה קצת פחות פורמלית

אולי יש לכה במיקרה גם את המישפט של בולצאנו ויירשטראס לקבוצות

"תהי [math]\displaystyle{ S }[/math] קבוצה המוכלת ממש בממשיים, קבוצה אינסופית אך גם חסומה. אזי קיימת לה נקודת הצטברות". מקווה שעזרתי, גל א.
אגב, אני לומד אצל ד"ר הורוביץ. אם אתה לא לומד אצלו, ייתכן שהמרצה שלך ניסח את זה קצת אחרת, אבל בסופו של דבר זה אותם משפטים.
בולצאנו-ויירשטראס זה לא זה שלכל סדרה חסומה יש תת סדרה מתכנסת?
אני מנחש שהוא מתכוון לגרסא: "לכל קבוצה אינסופית וחסומה יש נקודות הצטברות" --ארז שיינר 19:26, 30 בינואר 2011 (IST)

עזרה בבדיקת היתכנסות הטור

[math]\displaystyle{ \sum \frac{(2n)!}{(2n)^{2n}} }[/math]

(לא מתרגל/ת): מתכנס, אני מיד אכתוב למה.
חזרתי:
[math]\displaystyle{ }[/math] [math]\displaystyle{ \overline{\lim}\frac{(2n)!(2n+1)(2n+2)(2n)^{2n} }{(2n)!(2n+2)^{2n}(2n+2)^2 } }[/math] [math]\displaystyle{ = }[/math] [math]\displaystyle{ \overline{\lim_{n\to\infty} }\frac{(2n+2)!/(2n+2)^{2n+2} }{(2n)!/(2n)^{2n} } }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math] [math]\displaystyle{ \lim\left(\frac{2n+1}{2n+2}\cdot\left(\frac{2n}{2n+2}\right)^{2n}\right) }[/math] [math]\displaystyle{ = }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math] [math]\displaystyle{ \lim\frac{2n+1}{2n+2}\ \cdot\ \lim\left(\left(1+\frac1n\right)^n\right)^{-2} }[/math] [math]\displaystyle{ = }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math] [math]\displaystyle{ 1\cdot e^{-2} }[/math] [math]\displaystyle{ = }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ \lt }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
והודות לד'אלמבר הטור (שהוא טור חיובי) מתכנס. [math]\displaystyle{ \blacksquare }[/math]

פשש זה בדיוק מה שלא ראיתי החלק של המנה שמיתכנס ל e תודה רבה

בקשה

שלום רב, למישהו יש מושג איך לפתור את שאלה 1א במבחן הזה: http://www.studenteen.org/inf1_exam_blei_2008_a.pdf תודה מראש!

(לא מתרגל/ת): יש לי רעיון מתחכם, אבל יקח לי קצת זמן לכתוב אותו.
יש סיכוי שתכתוב אותו כאן בכל זאת היום או מחר? תודה מראש!
(לא מתרגל/ת): הרעיון הכללי - נוכיח שזה שואף לאינסוף. לשם כך מוכיחים שהטור [math]\displaystyle{ \sum \frac{2^n n! (4n)^n}{(4n)!} }[/math] מתכנס (מבחן ד'אלמבר), לכן [math]\displaystyle{ \frac{2^n (n!) (4n)^n}{(4n)!}\to0 }[/math] ולכן (מכיוון שהסדרה הזו חיובית), [math]\displaystyle{ \frac{(4n)!}{2^n (n!) (4n)^n}\to\infty }[/math]. אח"כ, מכיוון ש-[math]\displaystyle{ \forall n\in\mathbb N:\ \binom{3n}{n}\ge1 }[/math], מתקיים [math]\displaystyle{ \forall n\in\mathbb N:\ \sqrt[n]{\binom{3n}{n}}\ge1 }[/math] ולבסוף נקבל שהסדרה הכללית מתכנסת במובן הרחב לאינסוף. [math]\displaystyle{ \blacksquare }[/math]
או, זה יפה ^^

שאלה אלמנטרית

המרצה שלנו כתב בתחילת הקורס: P בריבוע זוגי -> P זוגי. זה כנראה נכון רק כאשר P שלם. יש לזה הוכחה קלה?

גם אני חיפשתי הוכחה עוד מזמן, והגעתי למסקנה שההוכחה היא פשוט של-p בריבוע יש את כל הגורמים של p, פעמיים. אז אם הוא זוגי זה אומר שיש לו את הגורם 2. נניח בשלילה של-p אין את הגורם 2. אבל ל-p בריבוע יש את הגורם 2, לכן חייב להיות ל-p את שורש 2. בסתירה לכך שהוא שלם. לכן יש ל-p את הגורם 2 כלומר הוא זוגי.
זה נכון עבור שלמים, אחרת אין משמעות לזוגי. זה נובע מחומר שהוא לא של הקורס הזה. יש משפט שאומר שאם ראשוני מחלק את ab אז הוא מחלק את a או מחלק את b, לכן אם 2 מחלק את aa=a^2 סימן שהוא מחלק את a. --ארז שיינר 13:08, 30 בינואר 2011 (IST)
ואני הופתעתי שלא מצאתי דרך מתמטית להוכחה אפילו שהמרצה כתב "קל להוכיח ש...".

חתכי דדקינד

לקבוצה של ד"ר שיין תהיה במבחן שאלה על חתכי דדקינד. הבעיה היא שלא היה תרגול בנושא, וגם אין שאלות עם תשובות במיזלר או בכל מקום אחר שבו חיפשתי.

שיין מסר 3 תרגילים בנושא, אבל אין לי מושג לאיזה פתרון הוא מצפה. כלומר, מה הכוונה "שפה של חתכי דדקינד"? אפשר בבקשה לראות פתרון של אחת או כמה מהשאלות הבאות: http://sites.google.com/site/eduardkontorovich/home/%D7%94%D7%9B%D7%A0%D7%94%D7%9C%D7%9E%D7%91%D7%97%D7%9F.pdf?attredirects=0&d=1 בבקשה ותודה רבה מראש!

מצטרף, במיוחד אם אפשר את הפתרון לשאלה 1 (הפתרון היחיד שאני מצאתי הוא "שסדרת החסמים העליונים של An מתכנסת", אבל סדרת החסמים העליונים של An היא בעצם סדרת הממשיים הנוצרים ע"י החתכים, כלומר לא אמרתי כלום בפתרון הזה.)
לי בפתרון חשוב במיוחד לראות את הנימוקים והניסוח, כלומר ה"שפה" של דדקינד. אז למרות שאני חושבת שאני יודעת את התשובה הסופית של 1, יעזור לי מאוד מאוד לראות פתרון מלא של 100 במבחן. אז התשובה, כלומר התנאי, הוא: לכל אפסילון חיובי קיים N כך שלכל n טבעי גדול מ-N, מתקיים שהקבוצה [math]\displaystyle{ A_n/A_{L-\epsilon} }[/math] מוכלת ב-[math]\displaystyle{ (L-\epsilon,L) }[/math]. בעצם שינוי של ההגדרה של ההתכנסות.
התבלבלת, מה זה An/A_L-e?
לא התבלבלתי, זה הקבוצה [math]\displaystyle{ A_n }[/math] בלי הקבוצה [math]\displaystyle{ A_{L-\epsilon} }[/math]. תיזכר בסימונים של בדידה.
אוקי.. אבל אני לא רואה איך התנאי פה קשור להתכנסות של סדרת המספרים. אולי תסבירי מה הכוונה פה. אבל בעצם, הרעיון הזה של לקחת את תנאי ההתכנסות למספרים ולהעתיק אותו לחתכים הוא רעיון ממש טוב, נראה לי שהוא יכול לעבוד. בזכות הרעיון שלך פתרתי את זה כך: צריך לעשות קודם כמה הכנות. נגדיר: חתך A הוא "חיובי" אם המס' שמייצר אותו (תמיד קיים) גדול מאפס, או במילים אחרות שכל מספר שקטן nאפס שייך לA (כנ"ל עם שלילי, אי שלילי וכו'). (הערה- כשאני אומר חתך A אני מתכוון לחתך A,A'). כמו כן "A-" הוא החתך שמייצר את המספר הנגדי לA, והרי הוכחנו בכיתה שלכל מספר ממשי יש נגדי ושכל מספר מיוצר ע"י חתך יחיד (כי אם המספר רציונלי, ניקח תמיד חתך מהסוג הראשון, ואם המספר אי רציונלי ניקח חתך מהסוג השלישי), ולכן ההגדרה טובה, ולבסוף נגדיר "|A|" כ-A אם A חיובי וכ- A- אם A שלילי, וב0 ברור. כעת התנאי יהיה שאם לכל אפסילון גדולה E (חתך) חיובית (גדולה מאפס=חיובית כמו שהגדרתי) קיים N כך שלכל n>N מתקיים שהחתך |An-L| מוכל בחתך E. (שוב, החלק השמאלי של החתך), אז סדרת החתכים מתכנסת לL. עכשיו רק צריך להוכיח שזה תנאי הכרחי ומספיק. אולי אנסה בהמשך ואגיד לך אם יש תוצאות..


http://dl.dropbox.com/u/2237179/infi1dedekind.pdf

לא הבנתי אף אחד מהפתרונות שלו ואני גם לא בטוח שהם נכונים.

מי כתב את הפתרון הזה?

זה מה ששיין שלח לתלמידים שלו במייל. תודה שיין, אבל זה כל כך לא בסדר ומלחיץ שלא פתרנו תרגילים כאלו קודם...

בפתרון למבחן של זלצמן 2010

כתוב בפיתרון לשאלה 5.ג ש<[math]\displaystyle{ e^{(x^2)} }[/math] רציפה במ"ש.

למה זה נכון?

זה לא נכון, וגם לא רשום שם. רשום שם שהיא רציפה, ובגלל שסינוס גם רציפה, ההרכבה רציפה ומחזורית ולכן ההרכבה רציפה במ"ש. --ארז שיינר 13:12, 30 בינואר 2011 (IST)

כלל לופיטל

כלל לופיטל הוא בחומר של הקבוצה של שיין?

למדנו את זה אז כנראה שכן...

כלל לופיטל

האם אפשר להשתמש בכלל לופיטל כדי למצוא גבולות בקצוות כאשר בודקים רציפות במ"ש של פונקציה?

לדעתי כן, מומלץ לשאול את המרצה או המתרגל בעת המבחן בנוסף. --ארז שיינר 13:24, 30 בינואר 2011 (IST)

מבחני קושי ודלמבר

מבחן קושי הוא עם limsup בשני המקרים (התכנסות והתבדרות) ומבחן דלמבר הוא עם limsup במקרה של התכנסות ו liminf במקרה של התבדרות, או שיש לי טעות? תודה!

אין טעות. תסתכל על ההוכחות שלהם ותבין למה.

חקירת פונקציות, המבחן של ד"ר הורוביץ

צריך לזכור בעל-פה את הסדר של הסעיפים בחקירת פונקציות? (תחום הגדרה ונקודות אי רציפות, האם הפונקציה זוגית/אי-זוגית/לא זה ולא זה, אסימפטוטות, תחומי עלייה+ירידה+נקודות קריטיות, תחומי קעירות+קמירות+נקודות פיתול, טבלת ערכים)
או שזה כתוב במבחן?

הוא אמר שלא בטוח שהוא יכתוב את זה. אבל הוא גם אמר שאין חובה לעשות לפיהסדר שהוא רשם אם כל הסעיפים כלולים. גל א.

ציונים

מספר תעודת הזהות שלי (312491822), ואפילו לא מספר דומה לו, לא מופיע בדף הציונים שפורסם היום. אתם יכולים לבדוק את זה? תודה רבה

יתכן ואתה תיכוניסט? אלו ציונים רק לתלמידים של זלצמן.
כן, תיכוניסט. תודה
הציונים של התיכוניסטים שאדוארד מתרגל מופיעים באתר שלו: sites.google.com/site/eduardkontorovich

איקס בריבוע

איך מוכיחים ש-[math]\displaystyle{ x^2 }[/math] לא רציפה במ"ש? תודה.

(לא מתרגל/ת): ראה פתרון תרגיל 8, שאלה 9.
תודה.

שאלה קלה מדי?

צ"ל או להפריך שאם הטור an מתכנס והטור bn מתבדר אז הטור an+bn מתבדר. לכאורה אפשר להניח בשלילה שהטור an+bn מתכנס, ואז הטור an + הטור bn מתכנס (*), לכן הטור an ועוד הטור bn פחות הטור an = הטור bn מתכנס, בסתירה. אבל ב-(*) הזזנו את המקום של אינסוף איברים, ולכן ההוכחה לא מספיקה. מה לעשות? (ניסיתי לרפד באפסים כמו שכתוב בארכיון 15)

מישהו יודע?

פתרון של הבחינות

הי ארז,

ראשית תודה שהעלת לנו את הפתרון לבחינות כל כך מהר. יתכן ששאלתי לא במקום משום שאני לא לומד אצל זלצמן - אבל מה עם הפתרון לשאלות 3 ו-6 בבחינה שלו? הן היו שאלות של ציטוט משפטים?

אגב, אולי לבחינות של התיכוניסטים כדאי להוסיף הבהרה ששאר השאלות שלא פורסם להן פתרון היו בבחינה של זלצמן (שאלה 1 של הורוביץ = שאלה 1 של זלצמן, שאלה 2 של הורוביץ = שאלה 7 של זלצמן, שאלה 4 של הורוביץ = שאלה 4 של זלצמן, שאלה 5 של הורוביץ = שאלה 2 של זלצמן). כמו כן כדאי להוסיף שהבחינה של ד"ר שיין זהה לבחינה של ד"ר הורוביץ, למעט בשאלה 6 שעסקה בחתכי דדקינד.

כעת שאלה לגבי הפתרונות עצמם: בשאלה 5ג (של זלצמן) כתבת ששורש איקס רציפה בכל הממשיים, אבל זה כמובן לא נכון כי היא מוגדרת רק בממשיים החיוביים. האם יש דרך אחרת להוכיח רציפות במ"ש בסעיף זה בלי להתבסס על טענה זו?

שוב תודה על פרסום הפתרונות (במיוחד עבור המבחן של ד"ר הורוביץ שזה בכלל לא מובן מאליו).

תשובה

שאלה 3 הייתה ציטוט משפטים, שאלה 6 עסקה בנגזרות, ושאלה 8 הייתה להוכיח את משפט קנטור - לא כתבתי להן פתרונות, כמו כן לא כתבתי פתרון לשאלה על חתכי דדיקינד.

לגבי 5ג, לא צריך ששורש איקס יהיה רציף במ"ש על כל הממשיים, אלא רציף במ"ש בתמונה של הפונקציה עליה הוא מורכב - במקרה זה הערך המוחלט ותמונתו [math]\displaystyle{ [0,\infty) }[/math] ולכן זה פתרון תקין.

תשובה

אוקי, שוב תודה :-)