88-311 תשפא סמסטר א: הבדלים בין גרסאות בדף
שורה 14: | שורה 14: | ||
:* הדרכה לגבי שאלה 4 בתרגיל 3: הראו כי <math>f(x)=x^{\frac{n}{d}}-c</math> הינו הפ"ם של <math>\alpha^d</math> מעל <math>F</math>. הראו גם כי <math>g(x)=x^{\frac{n}{d}}-c^{\frac{k}{d}}</math> מתאפס ב-<math>\alpha^k</math>. כדי להראות שהוא הפ"ם שלו, הראו כי <math>\alpha^d=(\alpha^n)^a\cdot (\alpha^k)^b\in F(\alpha^k) </math> לאילו <math>a,b\in \mathbb{Z}</math> ולפיכך <math>F(\alpha^d)= F(\alpha^k) </math>. מכאן ש-<math>[F(\alpha^k):F]=[F(\alpha^d):F]=\frac{n}{d}</math>. | :* הדרכה לגבי שאלה 4 בתרגיל 3: הראו כי <math>f(x)=x^{\frac{n}{d}}-c</math> הינו הפ"ם של <math>\alpha^d</math> מעל <math>F</math>. הראו גם כי <math>g(x)=x^{\frac{n}{d}}-c^{\frac{k}{d}}</math> מתאפס ב-<math>\alpha^k</math>. כדי להראות שהוא הפ"ם שלו, הראו כי <math>\alpha^d=(\alpha^n)^a\cdot (\alpha^k)^b\in F(\alpha^k) </math> לאילו <math>a,b\in \mathbb{Z}</math> ולפיכך <math>F(\alpha^d)= F(\alpha^k) </math>. מכאן ש-<math>[F(\alpha^k):F]=[F(\alpha^d):F]=\frac{n}{d}</math>. | ||
*[[מדיה:88311exe4_2020A.pdf | תרגיל 4]] (את השאלה הראשונה פתרנו באחד השיעורים הקודמים; יתר השאלות מהוות תרגול מצוין לנושאים האחרונים. בפרט, שימו לב שאתם יודעים כיצד לפתור את השאלה האחרונה - חישוב שדות פיצול של פולינומים) | *[[מדיה:88311exe4_2020A.pdf | תרגיל 4]] (את השאלה הראשונה פתרנו באחד השיעורים הקודמים; יתר השאלות מהוות תרגול מצוין לנושאים האחרונים. בפרט, שימו לב שאתם יודעים כיצד לפתור את השאלה האחרונה - חישוב שדות פיצול של פולינומים) | ||
*[[מדיה:תרגיל_5_-_תורת_גלואה.docx | תרגיל 5]] | *[[מדיה:תרגיל_5_-_תורת_גלואה.docx | תרגיל 5]] (בשאלה 4, הניחו כי הפולינום ספרבילי) | ||
*[[מדיה:תרגיל_6_-_תורת_גלואה.docx | תרגיל 6]] | *[[מדיה:תרגיל_6_-_תורת_גלואה.docx | תרגיל 6]] | ||
==רשימות התרגול== | ==רשימות התרגול== |
גרסה מ־01:37, 23 בנובמבר 2020
מרצה: פרופ' עוזי וישנה
מתרגל: בארי גרינפלד
לדף זה יועלו חומרי התרגול (רשימות התרגול, תרגילי הבית, פתרונות וכדומה). תרגילי הבית דומים עד זהים לשנה שעברה, ואין חובת הגשה. עם זאת, מומלץ מאוד לנסות לפתור לפני שמביטים בפתרון.
תרגילי בית
- תרגיל 1 (הערה: בשאלה 5, הניחו שהפולינום מתוקן)
- תרגיל 2
- תרגיל 3 ובנוסף שאלות 1,3,4 מכאן
- הדרכה לגבי שאלה 4 בתרגיל 3: הראו כי [math]\displaystyle{ f(x)=x^{\frac{n}{d}}-c }[/math] הינו הפ"ם של [math]\displaystyle{ \alpha^d }[/math] מעל [math]\displaystyle{ F }[/math]. הראו גם כי [math]\displaystyle{ g(x)=x^{\frac{n}{d}}-c^{\frac{k}{d}} }[/math] מתאפס ב-[math]\displaystyle{ \alpha^k }[/math]. כדי להראות שהוא הפ"ם שלו, הראו כי [math]\displaystyle{ \alpha^d=(\alpha^n)^a\cdot (\alpha^k)^b\in F(\alpha^k) }[/math] לאילו [math]\displaystyle{ a,b\in \mathbb{Z} }[/math] ולפיכך [math]\displaystyle{ F(\alpha^d)= F(\alpha^k) }[/math]. מכאן ש-[math]\displaystyle{ [F(\alpha^k):F]=[F(\alpha^d):F]=\frac{n}{d} }[/math].
- תרגיל 4 (את השאלה הראשונה פתרנו באחד השיעורים הקודמים; יתר השאלות מהוות תרגול מצוין לנושאים האחרונים. בפרט, שימו לב שאתם יודעים כיצד לפתור את השאלה האחרונה - חישוב שדות פיצול של פולינומים)
- תרגיל 5 (בשאלה 4, הניחו כי הפולינום ספרבילי)
- תרגיל 6