שיחה:88-132 סמסטר א' תשעא: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 53: שורה 53:
פתרון:
פתרון:


נניח ש <math>an</math> סדרה חיובית (בהשך נוכיח לגבי סדרה שלילית וסדרה מעורבת או שאני אגיד שבאופן דומה אפשר להוכיח..)
נניח ש <math>an</math> סדרה חיובית (בהמשך נוכיח לגבי סדרה שלילית וסדרה מעורבת או שאני אגיד שבאופן דומה אפשר להוכיח..)


ידוע שהסדרה <math>an</math> שואפת לגבול a ולכן נכתוב לפי הגדרת הגבול
ידוע שהסדרה <math>an</math> שואפת לגבול a ולכן נכתוב לפי הגדרת הגבול

גרסה מ־10:55, 25 בינואר 2011

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון


שאלות

שאלה על פתרון לתרגיל

http://math-wiki.com/images/b/b5/10Infi1Targil11Sol.pdf פה, תרגיל 11, בשאלה 1, כתבת: "כפי שראינו בכיתה, ניתן להשלים את f לפונקציה רציפה בקטע הסגור a M [ , 1]  ולכן היא רציפה שם במ"ש". תוכל להרחיב בנושא? ניתן להוכיח את התרגיל בלי לעשות טריקים כאלה של השלמה? וגם, בקטע עם דלתא, כתבת "ניתן לבחור 1>ל>0". למה? איך יודעים מהו דלתא? וגם למה צריך את זה? אפשר להוכיח את הקטע הזה בדרך אחרת ע"י השימוש בזה שהגבול בa מימין קיים, ולהראות ש-f רציפה במ"ש ב [math]\displaystyle{ (a,M] }[/math]?

יש לה אי רציפות סליקה בa ולכן ההשלמה הזו זה סילוק אי הרציפות על ידי הגדרת הערך של הפונקציה בa להיות הגבול שם מימין. לגבי הדלתא, אם משהו נכון עבור דלתא גדול מאחד, הוא בוודאי נכון לכל דלתא קטן מאחד. אנחנו עושים את זה על מנת שלא יצאו לנו שתי נקודות כך שאחת בקטע האינסופי ואחת בקטע הסופי (לכן יש חפיפה בינהם). --ארז שיינר 19:24, 24 בינואר 2011 (IST)
כמה שאלות: -למה לפונקציה אי רציפות סליקה בa? למה אם משהו נכון עבור דלתא גדול מאחד, הוא נכון גם לדלתא קטן מיוחד (כפי שאני רואה את זה- אם x<d=2 אז לא בהכרח x<1)? -בשביל מה הקטע החופף? בשביל שיהיה "אותו דלתא" גם אם x שייך לקטע האינסופי וגם לסופי? אבל בקטע האינסופי אין בכלל דלתא! תודה.
כי יש לה גבול סופי בa זו ההגדרה של אי רציפות סליקה. אמנם זה חד צדדי, אבל זה מספיק כי זה קצה הקטע (פונקציה רציפה ב[a,b] אם היא רציפה בקטע הפתוח וקיימים לה הגבולות החד צדיים בקצות הקטע ושווים לערך הפונקציה שם). הכוונה היא שאם קיים דלתא (נניח 2) כך שלכל איקס שקרוב לאיקס אפס עד כדי דלתא משהו קורה, בפרט המשהו הזה קורה לכל איקס שקרוב לאיקס אפס עד כדי דלתא קטן יותר (נגיד אחד) כי זה אפילו קרוב יותר. יש חפיפה על מנת שלא יהיו x_1,x_2 כך שאחד מהם בקטע אחד והשני בקטע השני ואז ההוכחה לא תהיה תקיפה לגביהם. --ארז שיינר 20:09, 24 בינואר 2011 (IST)
2 דברים- לא הבנתי את הקטע של עד כדי דלתא, בד"כ (בפרט בהוכחה של רציפות במ"ש צריך להוכיח שאם משהו (ברציפות במ"ש |x1-x2|<דלתא) אז קורה משהו (..קטן מאפסילון) ופה אם משהו נכון לדלתא כלשהו הוא לא בהכרח נכון לדלתא קטן יותר (אז לא הבנתי נכון את הכוונה). דבר שני, לגבי יש חפיפה על מנת שלא יהיו x_1,x_2 כך שאחד מהם בקטע אחד והשני בקטע השני ואז ההוכחה לא תהיה תקיפה לגביהם"- אבל בפועל כן יכולים להיות 2 איקסים שאחד בקטע ובשני לא, אז אם ההוכחה לא תקפה לגביהם, היא לא נכונה עבורם- ואז לא נכונה תמיד?
בגלל שדלתא קטן מאחד, לא יכולים להיות שני איקסים במרחק אחד שלא מוכלים שניהם באחד הקטעים. לגבי הדלתא: אם לכל [math]\displaystyle{ |x-y|\lt 2 }[/math] מתקיים [math]\displaystyle{ |f(x)-f(y)|\lt \epsilon }[/math] בוודאי נכון לומר שלכל [math]\displaystyle{ |x-y|\lt 0.5 }[/math] מתקיים [math]\displaystyle{ |f(x)-f(y)|\lt \epsilon }[/math]. --ארז שיינר 21:32, 24 בינואר 2011 (IST)

שאלה קודמת (טור)

עדיין לא הבנתי פתרון לשאלה ששאלתי וכעת שייכת לארכיון - [[1]] תודה!

אני לא יודע מה הקשר לקטן או גדול זה עניין של גבול. אם [math]\displaystyle{ \frac{a_n}{b_n}\rightarrow L \gt 0 }[/math] אזי הטורים a_n וb_n מתכנסים יחדיו (חברים). --ארז שיינר 20:41, 24 בינואר 2011 (IST)
וואו, לא היה זכור לי משפט כזה, מזל ששאלתי. תודה
אני לא יודע אם זה בדיוק משפט. פשוט מבחן ההשוואה השני נובע מזה בקלות - קיים אפסילון כך ש[math]\displaystyle{ L-\epsilon\gt 0 }[/math] והחל משלב מסויים מתקיים [math]\displaystyle{ L-\epsilon \lt \frac{a_n}{b_n} \lt L + \epsilon }[/math]. --ארז שיינר 21:29, 24 בינואר 2011 (IST)

שאלה 1 מועד א 2007 של זלצמן

תהי [math]\displaystyle{ {an} }[/math] סדרה כך ש [math]\displaystyle{ lim( an )= a }[/math] ו [math]\displaystyle{ lim (-1)^n an = b }[/math] הוכח: [math]\displaystyle{ a=b=0 }[/math]

אשמח אם מישהו יגיד לי אם פתרתי נכון, כי אני לא כלכך בטוח בכך.

פתרון:

נניח ש [math]\displaystyle{ an }[/math] סדרה חיובית (בהמשך נוכיח לגבי סדרה שלילית וסדרה מעורבת או שאני אגיד שבאופן דומה אפשר להוכיח..)

ידוע שהסדרה [math]\displaystyle{ an }[/math] שואפת לגבול a ולכן נכתוב לפי הגדרת הגבול


[math]\displaystyle{ |a_n-a |\lt \varepsilon| }[/math]

לכן גם

[math]\displaystyle{ | a_{2n} - a |\lt \varepsilon }[/math] בנוסף,

ניתן לתאר את הסדרה [math]\displaystyle{ (-1)^na_n }[/math] בצורה הבאה :

[math]\displaystyle{ b_2n=-a_1+a_2-a_3+a_4...-a_{2n}-1+a_{2n} }[/math] כלומר:

[math]\displaystyle{ b_2n=(a_2-a_1)+(a_4-a_3)...+(a_{2n}-a_{2n-1}) }[/math]


כלומר:

[math]\displaystyle{ | a_{2n}-a_{2n -1} - b |\lt \varepsilon }[/math] לפי הנתון.

היות ו[math]\displaystyle{ a_n }[/math] חיובית, נוכל לרשום(כמסקנה מהמשוואות עד עתה) את הדבר הבא

[math]\displaystyle{ |a_{2n-1} - b|\lt \varepsilon+ a_{2n} }[/math]

ולכן :

[math]\displaystyle{ |-a_{2n-1} - b|=|a_{2n-1}+b|\lt \varepsilon + a_{2n}\lt 2\varepsilon +a }[/math]

ולכן

[math]\displaystyle{ |a_{2n-1}+b-a|\lt 2\varepsilon }[/math]

הגבול של [math]\displaystyle{ a_n }[/math] של [math]\displaystyle{ a_{2n} }[/math] ושל [math]\displaystyle{ a_{2n-1} }[/math] הוא אותו גבול

ולכן [math]\displaystyle{ b-a=-a }[/math] [math]\displaystyle{ b=0 }[/math]

הצלחתי להגיע עד לפה. אשמח לדעת אם הפתרון שי עד לפה בסדר, ואם הוא טוב אז איך ממשיכים