שיחה:88-132 סמסטר א' תשעא
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
ארכיון
- ארכיון 1
- ארכיון 2
- ארכיון 3
- ארכיון 4
- ארכיון 5
- ארכיון 6
- ארכיון 7
- ארכיון 8
- ארכיון 9
- ארכיון 10
- ארכיון 11
- ארכיון 12
- ארכיון 13
- ארכיון 14
שאלות
שאלה על פתרון לתרגיל
http://math-wiki.com/images/b/b5/10Infi1Targil11Sol.pdf פה, תרגיל 11, בשאלה 1, כתבת: "כפי שראינו בכיתה, ניתן להשלים את f לפונקציה רציפה בקטע הסגור a M [ , 1] ולכן היא רציפה שם במ"ש". תוכל להרחיב בנושא? ניתן להוכיח את התרגיל בלי לעשות טריקים כאלה של השלמה? וגם, בקטע עם דלתא, כתבת "ניתן לבחור 1>ל>0". למה? איך יודעים מהו דלתא? וגם למה צריך את זה? אפשר להוכיח את הקטע הזה בדרך אחרת ע"י השימוש בזה שהגבול בa מימין קיים, ולהראות ש-f רציפה במ"ש ב [math]\displaystyle{ (a,M] }[/math]?
- יש לה אי רציפות סליקה בa ולכן ההשלמה הזו זה סילוק אי הרציפות על ידי הגדרת הערך של הפונקציה בa להיות הגבול שם מימין. לגבי הדלתא, אם משהו נכון עבור דלתא גדול מאחד, הוא בוודאי נכון לכל דלתא קטן מאחד. אנחנו עושים את זה על מנת שלא יצאו לנו שתי נקודות כך שאחת בקטע האינסופי ואחת בקטע הסופי (לכן יש חפיפה בינהם). --ארז שיינר 19:24, 24 בינואר 2011 (IST)
- כמה שאלות: -למה לפונקציה אי רציפות סליקה בa? למה אם משהו נכון עבור דלתא גדול מאחד, הוא נכון גם לדלתא קטן מיוחד (כפי שאני רואה את זה- אם x<d=2 אז לא בהכרח x<1)? -בשביל מה הקטע החופף? בשביל שיהיה "אותו דלתא" גם אם x שייך לקטע האינסופי וגם לסופי? אבל בקטע האינסופי אין בכלל דלתא! תודה.