מרחב עצמי

מתוך Math-Wiki
גרסה מ־09:49, 20 באוקטובר 2012 מאת ארז שיינר (שיחה | תרומות) (יצירת דף עם התוכן "תהי מטריצה ריבועית A מסדר n, ויהי <math>\lambda</math> ע"ע של A. נגדיר את ה'''מרחב העצמי''' ש...")
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

תהי מטריצה ריבועית A מסדר n, ויהי [math]\displaystyle{ \lambda }[/math] ע"ע של A. נגדיר את המרחב העצמי של המטריצה A המתאים לע"ע [math]\displaystyle{ \lambda }[/math] להיות תת המרחב הלינארי:


[math]\displaystyle{ V_\lambda=\{v\in F^n|Av=\lambda v\}=N(A-\lambda I) }[/math]


עובדה:

v וקטור עצמי של A אם"ם [math]\displaystyle{ v\neq 0 }[/math] וגם [math]\displaystyle{ v\in V_\lambda }[/math]


כלומר, המרחב העצמי הוא אוסף כל הוקטורים העצמיים המתאימים לערך העצמי, יחד עם וקטור האפס (שאינו וקטור עצמי לפי הגדרה).