שיטות אינטגרציה

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש.

אינטגרציה "רגילה"

הכוונה היא לבצע את האינטגרל לפי חוקי הגזירה. לדוגמה,
[math]\displaystyle{ \int \left(e^x+\frac{1}{x} \right )dx=e^x+ln\left | x \right |+c }[/math].

השלמה לריבוע

כאשר נקבל פונקציה רציונאלית שבמונה שלה יש מספר ובמכנה שלה פולינום ממעלה שנייה, ניתן להשלים את הפולינום לריבוע ולהיעזר ב-[math]\displaystyle{ arctan }[/math].

דוגמה

[math]\displaystyle{ \int\frac{1}{x^2+x+1\frac{1}{4}}dx }[/math]

ניעזר בהשלמה לריבוע של המכנה. נקבל:

[math]\displaystyle{ \int\frac{1}{x^2+x+1\frac{1}{4}}dx=\int\frac{1}{\left (x+\frac{1}{2} \right )^2+1}dx=arctan\left (x+\frac{1}{2} \right )+c }[/math]

אינטגרציה בחלקים

לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים:
[math]\displaystyle{ \int{f'g}=fg-\int{fg'} }[/math] (ניתן לוודא על ידי גזירה).

דוגמה

נחפש את [math]\displaystyle{ \int ln\ x \ dx }[/math].

לפי השיטה, נסמן [math]\displaystyle{ f'\left (x \right )=1 }[/math], [math]\displaystyle{ g(x)=ln\ x }[/math].

לכן נקבל [math]\displaystyle{ f(x)=x }[/math], [math]\displaystyle{ g'(x)=\frac{1}{x} }[/math].

לפי נוסחת אינטגרציה בחלקים, נקבל:

[math]\displaystyle{ \int ln\ x \ dx=x\cdot ln\ x-\int x\cdot \frac{1}{x}\ dx=x\cdot ln\ x-\int 1\ dx=x\cdot ln\ x-x+c }[/math].

הרחבה

הרחבה

אינטגרציה בהצבה

לפי כלל השרשרת, אנו מקבלים:
[math]\displaystyle{ \int f\left (g\left(x \right ) \right )\cdot g'\left (x \right )\ dx=F\left (g\left(x \right ) \right )+c }[/math] (ניתן לוודא על ידי גזירה).

דוגמה

נחפש את [math]\displaystyle{ \int \frac{sin\left(2x \right )}{a+sin^2 x}dx }[/math] כאשר [math]\displaystyle{ a\gt 0 }[/math].

נבצע הצבה: [math]\displaystyle{ du=2\cdot sin\ x\cdot cos\ x\ dx=sin\left(2x \right )dx \ \Leftarrow u=sin^2 x }[/math]. מקבלים:

[math]\displaystyle{ \int \frac{sin\left(2x \right )}{a+sin^2 x}dx=\int \frac{1}{a+u}du=ln\left ( a+u \right )+c=ln(a+sin^2 x)+c }[/math] (נזכור כי [math]\displaystyle{ a+u\gt 0 }[/math], לכן אין צורך בערך מוחלט).

הרחבה

הרחבה

ההצבה הטריגונומטרית האוניברסלית

בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב [math]\displaystyle{ u=tan\left (\frac{x}{2}\right ) }[/math].

נזכור כי [math]\displaystyle{ 1+tan^2\alpha=\frac{1}{cos^2 \alpha }[/math]}, ונקבל [math]\displaystyle{ cos^2 \left ( \frac{x}{2} \right )=\frac{1}{1+tan^2\left ( \frac{x}{2} \right )}=\frac{1}{1+u^2} }[/math].

נקבל בנוסף [math]\displaystyle{ cos\ x=2\dcot cos^2\left ( \frac{x}{2} \right )-1=2\cdot\frac{1}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2} }[/math].

לכן [math]\displaystyle{ sin\ x=\sqrt{ 1-cos^2 x }=\sqrt{1-\left (\frac{1-u^2}{1+u^2} \right )^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}=\sqrt{\frac{1+2u^2+u^4-\left (1-2u^2+u^4 \right )}{\left ( 1+u^2 \right )^2}}=\sqrt{\frac{4u^2}{\left ( 1+u^2 \right )^2}}=\sqrt{\frac{\left ( 2u \right )^2}{\left ( 1+u^2 \right )^2}}=\frac{2u}{1+u^2} }[/math]

כמו כן, [math]\displaystyle{ x=2\cdot arctan\ t }[/math], ולכן [math]\displaystyle{ dx=\frac{2}{1+u^2} du }[/math].

דוגמה

[math]\displaystyle{ \int\frac{1}{2+2\cdot sin\ x}dx }[/math]

ניעזר בהצבה הטריגונומטרית האוניברסלית. נציב [math]\displaystyle{ u=tan\left (\frac{x}{2}\right ) }[/math]. נקבל:

[math]\displaystyle{ \int\frac{1}{2+2\cdot sin\ x}dx=\int\frac{1}{2+2\cdot \frac{2u}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int\frac{1+u^2}{2+2u^2+4u}\cdot\frac{2}{1+u^2}du=\int\frac{1}{u^2+2u+1}du=\int\frac{1}{\left (u+1\right )^2}du=-\frac{1}{u+1}+c=-\frac{1}{1+tan\left (\frac{x}{2}\right )}+c }[/math]

הרחבה

הרחבה