שיטות אינטגרציה

מתוך Math-Wiki

בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.

אינטגרציה מיידית[עריכה]

אינטגרל מיידי הוא אינטגרל על פונקציה שאנחנו יודעים מי הקדומה שלה.

לדוגמא: [math]\displaystyle{ \int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C }[/math]

דף אינטגרליים מיידיים

אינטגרציה בחלקים[עריכה]

לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים:

[math]\displaystyle{ \int f'g=f\cdot g-\int fg' }[/math] (ניתן לוודא על ידי גזירה).

דוגמא[עריכה]

[math]\displaystyle{ \int\ln(x)dx }[/math]

לפי השיטה, נסמן [math]\displaystyle{ f'(x)=1\ ,\ g(x)=\ln(x) }[/math] .

לכן נקבל [math]\displaystyle{ f(x)=x\ ,\ g'(x)=\frac{1}{x} }[/math] .

לפי נוסחת אינטגרציה בחלקים, נקבל:

[math]\displaystyle{ \int\ln(x)dx=x\ln(x)-\int x\cdot\frac{1}{x}dx=x\ln(x)-\int 1\,dx=x\ln(x)-x+C }[/math]


הרחבה

אינטגרציה בהצבה[עריכה]

לפי כלל השרשרת, אנו מקבלים:

[math]\displaystyle{ \int f(g(x))\cdot g'(x)dx=F(g(x))+C }[/math] (ניתן לוודא על-ידי גזירה).

דוגמא[עריכה]

[math]\displaystyle{ \int\frac{\sin(2x)}{a+\sin^2(x)}dx }[/math] כאשר [math]\displaystyle{ a\gt 0 }[/math] .

נבצע הצבה[math]\displaystyle{ u=\sin^2(x)\ }[/math] ולכן [math]\displaystyle{ du=2\sin(x)\cos(x)dx=\sin(2x)dx\ }[/math]

מקבלים:

[math]\displaystyle{ \int\frac{\sin(2x)}{a+\sin^2(x)}dx=\int\frac{du}{a+u}=\ln(a+u)+C=\ln\big(a+\sin^2(x)\big)+C }[/math] (נזכור כי [math]\displaystyle{ a+u\gt 0 }[/math] , לכן אין צורך בערך מוחלט).


הרחבה

פונקציה רציונאלית[עריכה]

על מנת לחשב אינטגרל על פונקציה רציונאלית [math]\displaystyle{ f(x)=\frac{p(x)}{q(x)} }[/math] (כאשר [math]\displaystyle{ p(x),q(x) }[/math] פולינומים), עלינו לעקוב אחרי השלבים הבאים:

  • אם דרגת המונה גדולה מדרגת המכנה, נבצע חילוק פולינומים.
  • נבצע פירוק לשברים חלקיים.
  • נחשב את האינטגרל של כל שבר חלקי.

ניתן לקרוא כאן את האלגוריתם המלא.

הצבות אוניברסאליות[עריכה]

הצבות אוניברסאליות הוא כינוי כללי להצבות המעבירות פונקציות ממשפחה מסוימת לצורה של פונקציה רציונאלית אותה אנחנו יודעים לפתור. שימו לב שכיון ופתרון פונקציה רציונאלית דורש פירוק פולינומים, לעתים המעבר לפונקציה רציונאלית לא יקדם אותנו לקראת פתרון הבעיה.

הצבות אוניברסאליות ידועות ניתן למצוא בקובץ הבא: (עד אשר מישהו יקליד אותו אל תוך הויקי...)

ההצבה הטריגונומטרית האוניברסלית[עריכה]

בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב [math]\displaystyle{ u=\tan\left(\frac{x}{2}\right) }[/math] .

נזכור כי [math]\displaystyle{ 1+\tan^2(\alpha)=\frac{1}{\cos^2(\alpha)} }[/math] , ונקבל [math]\displaystyle{ \cos^2\left(\frac{x}{2}\right)=\frac{1}{1+\tan^2\left(\frac{x}{2}\right)}=\frac{1}{1+u^2} }[/math] .

נקבל בנוסף [math]\displaystyle{ \cos(x)=2\cos^2\left(\frac{x}{2}\right)-1=\frac{2}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2} }[/math] .

לכן:

[math]\displaystyle{ \sin(x)=\sqrt{1-\cos^2(x)}=\sqrt{1-\left(\frac{1-u^2}{1+u^2}\right)^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}= }[/math]

[math]\displaystyle{ \sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2} }[/math]

ובדרך אחרת:

[math]\displaystyle{ \tan(\frac{x}{2})=\frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})}=\frac{2 \cdot \sin(\frac{x}{2}) \cdot \cos(\frac{x}{2})}{2 \cos^2(\frac{x}{2})}=\frac{\sin(x)}{2 \cos^2(\frac{x}{2})} }[/math]

ולכן מתקיים

[math]\displaystyle{ \sin(x)=\tan(\frac{x}{2})\cdot 2 \cos^2(\frac{x}{2})=\frac{2u}{1+u^2} }[/math]


כמו כן, [math]\displaystyle{ x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du }[/math] .

לסיכום,

[math]\displaystyle{ u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du }[/math]

דוגמא[עריכה]

[math]\displaystyle{ \int\frac{dx}{2+2\sin(x)} }[/math]

נעזר בהצבה הטריגונומטרית האוניברסלית. נציב [math]\displaystyle{ u=\tan\left(\frac{x}{2}\right) }[/math] . נקבל:

[math]\displaystyle{ \int\frac{dx}{2+2\sin(x)}=\frac{1}{2}\int\frac{1}{1+\frac{2u}{1+u^2}}\cdot\frac{2}{1+u^2}du=\frac{1}{2}\int\frac{1+u^2}{u^2+2u+1}\cdot\frac{2}{1+u^2}du }[/math]

[math]\displaystyle{ =\int\frac{du}{(u+1)^2}=-\frac{1}{u+1}+C=-\frac{1}{1+\tan\left(\frac{x}{2}\right)}+C }[/math]


הרחבה

הצבות אוילר[עריכה]

הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם [math]\displaystyle{ x }[/math] ו- [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .

אוילר 1 - הפולינום פריק[עריכה]

נניח כי הפולינום [math]\displaystyle{ ax^2+bx+c }[/math] פריק (מעל הממשיים, כמובן). נסמן [math]\displaystyle{ ax^2+bx+c=a(x-\alpha)(x-\beta) }[/math] .

הצבת אוילר: נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=u(x-\alpha) }[/math] (אפשר גם את השורש השני). נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math] , ונוכל למצוא גם את [math]\displaystyle{ x }[/math] וגם את [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .

דוגמא[עריכה]

[math]\displaystyle{ \int\frac{dx}{x\sqrt{x^2-7x+6}} }[/math]


נעזר בהצבת אוילר: נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=u(x-1) }[/math] .


לכן [math]\displaystyle{ (x-1)(x-6)=u^2(x-1)^2 }[/math] , כלומר [math]\displaystyle{ x-6=u^2(x-1) }[/math] , ומכאן [math]\displaystyle{ x=\frac{u^2-6}{u^2-1} }[/math] .


לכן [math]\displaystyle{ dx=\frac{2u(u^2-1)-2u(u^2-6)}{(u^2-1)^2}du=\frac{10u}{(1-u^2)^2}du }[/math] .


בנוסף, [math]\displaystyle{ \sqrt{x^2-7x+6}=u(x-1)=u\left(\frac{u^2-6}{u^2-1}-1\right)=-\frac{5u}{u^2-1} }[/math]

מקבלים:

[math]\displaystyle{ \int\frac{dx}{x\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2-6}{u^2-1}\cdot\frac{5u}{u^2-1}}\cdot\frac{10u}{(1-u^2)^2}du=-2\int\frac{du}{u^2-6} }[/math] כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.

אוילר 2 - פולינום יותר כללי[עריכה]

ישנן שתי אפשרויות:

  1. בהינתן [math]\displaystyle{ a\gt 0 }[/math] , נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=\sqrt{a}x+u }[/math] .
  2. בהינתן [math]\displaystyle{ c\gt 0 }[/math] , נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=xu+\sqrt c }[/math] .

נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math] , ונוכל למצוא את [math]\displaystyle{ dx }[/math] ואת [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .

דוגמא[עריכה]

[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-7x+6}} }[/math]

ניעזר בהצבת אוילר (האופציה הראשונה): נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u }[/math] .


נעלה בריבוע ונקבל [math]\displaystyle{ x^2-7x+6=x^2+2xu+u^2 }[/math] , כלומר [math]\displaystyle{ x=\frac{6-u^2}{2u+7} }[/math] .


לכן [math]\displaystyle{ dx=\frac{-2u(2u+7)-2(6-u^2)}{(2u+7)^2}du=-2\cdot\frac{u^2+7u+6}{(2u+7)^2}du }[/math] ,


וכן [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7} }[/math] .

מקבלים:

[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2+7u+6}{2u+7}}\cdot2\cdot\frac{u^2+7u+6}{(2u+7)^2}du=-\int\frac{2}{2u+7}du=-\ln(|2u+7|)+C=-\ln\left(\left|\sqrt{x^2-7x+6}-x\right|\right)+C }[/math]


הרחבה

סיכום[עריכה]

דף מסכם