שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - הרצאה/27.2.11

נוספו 97 בתים, 12:36, 5 במרץ 2011
/* משפט 11 {{הערה|(תכונות האינטגרל)}} */
# {{הערה|(מונוטוניות):}} אם <math>f(x)\ge g(x)</math> לכל <math>x\in[a,b]</math> אז <math>
\int\limits_a^b f\ge\int\limits_a^b g</math>. {{הערה|(חיוביות):}} בפרט, אם <math>\forall x\in[a,b]:\ f(x)\ge0</math> אז <math>\int\limits_a^b f\ge0</math>.
# {{הערה|(איהכללה לאי-שיוויון המשולש):}} אם |f| אינטגרבילית ב-<math>[a,b]</math> אז <math>\left|\int\limits_a^b f\right|\le\int\limits_a^b |f|</math>.
# אם <math>m\le f(x)\le M</math> ב-<math>[a,b]</math> אז <math>m(b-a)\le\int\limits_a^b f\le M(b-a)</math> ואם <math>|f(x)|\le M</math> בקטע זה אז אז <math>\left|\int\limits_a^b f\right|\le M(b-a)</math>.
# אם <math>f(x)=M</math> (פונקציה קבועה) אז <math>\int\limits_a^b f= M(b-a)</math>.
<ol start="2">
<li>נתבונן בסכום רימן כלשהו עבור g: <math>\sum_{k=1}^n g(c_k)\Delta x_k</math>. לפי הנתון הוא קטן או שווה ל- <math>\sum_{k=1}^n f(c_k)\Delta x_k</math>. נשאיף <math>\lambda(P)\to0</math>. סכומים אלה שואפים לאינטגרלים של f ו-g ונסיק <math>\int\limits_a^b f\ge\int\limits_a^b g</math>. {{משל}}</li>
<li>נעיר ש-<math>\Omega</math> היא בעצם <math>\Omega(f)=\sup\{|f(x)-f(y)|:\ x,y\in[a,b]\}</math>. כזכור, אי שיוויון המשולש גורר ש-<math>\Big||f(x)|-|f(y)|\Big|\le|f(x)-f(y)|</math>. לכן <math>\Omega(|f|)=\sup\left\{\Big||f(x)|-|f(y)|\Big|:\ x,y\in[a,b]\right\}\le\sup\{|f(x)-f(y)|:\ x,y\in[a,b]\}=\Omega(f)</math>. כעת תהי P חלוקה כלשהי של <math>[a,b]</math>. <math>\overline S(f,P)-\underline S(f,P)=\sum_{k=1}^n (M_k(f)-m_k(f))\Delta x_k</math>. נעיר שלכל f, <math>M_k(f)-m_k(f)</math> היא התנודה של f בקטע <math>[x_{k-1},x_k]</math> ולפי מה שהוכחנו זה גדול או שווה לתנודה של |f| באותו קטע: {{left|<math>\begin{align}\overline S(f,P)-\underline S(f,P)&=\sum_{k=1}^n \Big(M_k(f)-m_k(f)\Big)\Delta x_k\\&\ge\sum_{k=1}^n \Big(M_k(|f|)-m_k(|f|)\Big)\Delta x_k\\&=\overline S(|f|,P)-\underline S(|f|,P)\end{align}</math>. }}כעת נוכיח ש-|f| אינטגרבילית. לצורך זה יהי <math>\varepsilon>0</math> נתון. כיוון ש-f אינטגרבילית (נתון) קיימת חלוקה P של <math>[a,b]</math> כך ש-<math>\overline S(|f|,P)-\underline S(|f|,P)\le\overline S(f,P)-\underline S(f,P)\to0</math> ונובע ממשפט 5 ש-|f| אינטגרבילית. נותר להוכיח את אי-השיוויון <math>\left|\int\limits_a^b f\right|\le\int\limits_a^b |f|</math>. נעיר שלכל לפי אי-שיוויון המשולש, לכל סכום רימן ל-של f, מתקיים <math>\left|\sum_{k=1}^n f(c_k)\Delta x_k\right|\le\sum_{k=1}^n |f(c_k)|\Delta x_k</math>. נשאיף <math>\lambda(P)\to0</math> ונקבל ש-<math>\left|\int\limits_a^b f\right|\le\int\limits_a^b|f|</math>. {{משל}}</li>
<li>נתון <math>m\le f(x)\le M</math>. לפי משפט 1, לכל חלוקה P של <math>[a,b]</math> מתקיים <math>m(b-a)\le\underline S(f,P)\le\overline S(f,P)\le M(b-a)</math>. נשאיף את <math>\lambda(P)\to0</math> כדי להסיק <math>m(b-a)\le\int\limits_a^b f\le M(b-a)</math>. אם נתון <math>|f(x)|\le M</math> אז נוכל להסתמך על סעיף 3 ומה שהוכחנו הרגע לומר <math>\left|\int\limits_a^b f\right|\le\int\limits_a^b |f|\le M(b-a)</math>. {{משל}}</li>
<li>לפי הנתון <math>M\le f(x)\le M</math>. לכן, עפ"י סעיף 4 <math>M(b-a)\le\int\limits_a^b f\le M(b-a)</math> ויש שיוויון. {{משל}}</li>
</ol>