השינוי האחרון נעשה בֹ־11 בנובמבר 2018 ב־16:56

88-202 תשעט סמסטר א

88-202 תורת הקבוצות

מרצה: פרופ' בועז צבאן.

מתרגלת: תמר בר-און.

דרישות הקורס: תרגיל (20% מהציון הסופי), מטלות קריאה עצמית, מבחן (80% מהציון הסופי). חובה להגיש לפחות 70% מתרגילי הבית (מעוגל כלפי מעלה) כדי לקבל ציון בקורס.

הודעות

מטלת קריאה ראשונה בקורס: הוכחת משפט הרקורסיה (+דוגמא מפורטת כבונוס).

תקציר הקורס

תקציר הקורס המתעדכן. מתעדכן מדי הרצאה, ולכן לא מומלץ להורידו אלא לקרוא תמיד מהקישור.

תרגילים

תרגיל 1

פתרון

תרגיל 2

תרגיל 3

תרגיל 4

תרגיל 5

העשרה

איך לספור מעבר לאינסוף: סרטון המסביר באופן מאד ויזואלי ויפה, את המושגים המרכזיים בחלק הראשון של הקורס.

משפט גודשטיין: הערך בויקיפדיה. מכיל דוגמאות מפורטות של סדרות, והרחבות שונות.

הפרדוקס של בנך-טרסקי: איך אפשר - תיאורטית - להפוך כדור זהב אחד לשניים, בעזרת אקסיומת הבחירה.