|
|
(84 גרסאות ביניים של 14 משתמשים אינן מוצגות) |
שורה 1: |
שורה 1: |
| =שאלות= | | =תרגילי בית= |
| | |
|
| |
|
| == '''[[88-236 תשעא סמסטר קיץ/שאלות ותשובות - ארכיון 1|ארכיון תרגיל 1]]''' == | | == '''[[88-236 תשעא סמסטר קיץ/שאלות ותשובות - ארכיון 1|ארכיון תרגיל 1]]''' == |
| == '''[[88-236 תשעא סמסטר קיץ/שאלות ותשובות - ארכיון 2|ארכיון תרגיל 2]]''' == | | == '''[[88-236 תשעא סמסטר קיץ/שאלות ותשובות - ארכיון 2|ארכיון תרגיל 2]]''' == |
| == '''[[88-236 תשעא סמסטר קיץ/שאלות ותשובות - ארכיון 3|ארכיון תרגיל 3]]''' == | | == '''[[88-236 תשעא סמסטר קיץ/שאלות ותשובות - ארכיון 3|ארכיון תרגיל 3]]''' == |
| | == '''[[88-236 תשעא סמסטר קיץ/שאלות ותשובות - ארכיון 4|ארכיון תרגיל 4]]''' == |
|
| |
|
| == תרגיל 4 == | | = '''[[88-236 תשעא סמסטר קיץ/שאלות ותשובות - שונות|שונות]]''' = |
| מתי יעלו פתרונות של תרגיל 2? ו-3? לפחות של 2.....
| |
| : מחר --[[משתמש:Grisha|Grisha]] 19:53, 28 באוגוסט 2011 (IDT)
| |
| | |
| ===שאלה===
| |
| מה לעזאזל? ברצינות
| |
| :מצטרף. מה הקשר לקבוצות קומפקטיות פתאום בקורס הזה?
| |
| :: מה מפריע לך בכך שקבוצה היא קומפקטית? האם חסר מידע כלשהו?--[[משתמש:Grisha|Grisha]] 18:15, 31 באוגוסט 2011 (IDT)
| |
| | |
| ===שאלה 3===
| |
| לא התכוונתם שהדומיין של המשטח יהיה בין 0 ל2pi? אחרת הוא לא מקיף את התחום ויהיה עלינו לחשב כמה אינטגרלים לא סימפטיים (שנראה כי נכתבו בכוונה כדי שייתבטלו בעזרת סטוקס).
| |
| או שזה יהיה cos(2*Pi*t) וsin(2*Pi*t)?
| |
| | |
| אכן צריך להיות שם פאי. א' צריך להיות ((γ(s,t)=(2cos(2π t),3sin(2π t)cos(πs),sin(2π t)sin(πt ו-ב' צריך להיות ((γ(t)=(cos(2πt),sin(2πt),sin(2πt [ברק]
| |
| | |
| ===שאלה 3 סעיף א'===
| |
| נתונה פרמטריזציה של פני אליפסואיד, אבל התחום של הפרמטרים הוא בין 0 ל-1, אז מקבלים רק חלק מפני האליפסואיד. האם זאת הייתה הכוונה?
| |
| | |
| נפלה טעות בניסוח, ראה תשובה לשאלה הבאה. [ברק]
| |
| | |
| ===שאלה 3 סעיף ב'===
| |
| מסילה ב-R^3 היא אינה שפה של אף תחום ב-R^3, ואין לה שפה. כיצד אנו אמורים להשתמש במשפט סטוקס?
| |
| אודה לכם אם אקבל תשובה מהירה, התרגיל להגשה בעוד כחמישה ימים ויש גם מבחן על הדרך.
| |
| | |
| | |
| מתנצל, צריך להיות בסעיף ב' ((γ(t)=(cos(2πt),sin(2πt),sin(2πt נפלה שגיאה בניסוח השאלה. בסעיף א' אמור להיות:
| |
| ((γ(s,t)=(2cos(2π t),3sin(2π t)cos(πs),sin(2π t)sin(πs [ברק]
| |
| | |
| :'''התשובה אינה פותרת את הבעייתיות של סעיף ב'. למסילה ב-R^3 אין שפה והיא גם לא שפה של תחום כלשהו, אפילו אם היא סגורה.
| |
| ''' | |
| :: אני רק רוצה להוסיף שזה שכתבת "[ברק]" לא מוסיף לך הרבה אמינות. איך אנחנו יודעים שאתה ברק הראל האמיתי או שסתם עובדים עלינו? יש מצב שאתם מתקנים את התרגיל\כותבים מהיוזר המוכר של גרישה כדי למנוע ספק?
| |
| ::: גם זה שאני כותב [[משתמש:Grisha|Grisha]] לא מוסיף אמינות, המערכת פתוחה לכולם וכל אחד יכול להכניס שינויים. יוצאים מנקודת הנחה שאנחנו לא בגן ילדים.
| |
| :::::'''התשובה אינה פותרת את הבעייתיות של סעיף ב'. למסילה ב-R^3 אין שפה והיא גם לא שפה של תחום כלשהו, אפילו אם היא סגורה.
| |
| '''
| |
| :::::: עיגול מוכל ב-<math>\R^3</math> ומעגל (שהוא למעשה מסילה) הוא שפה שלו.--[[משתמש:Grisha|Grisha]] 18:42, 31 באוגוסט 2011 (IDT)
| |
| | |
| :::::::לא נכון. השפה של קבוצה A זה cl(A)/int(A. הסגור של העיגול זה העיגול עצמו, והפנים ריק.
| |
| | |
| ===שאלה 3 - תרגיל מתוקן הועלה לאתר --[[משתמש:Grisha|Grisha]] 18:22, 31 באוגוסט 2011 (IDT)===
| |
| | |
| ==שאלה שקשורה להרצאה מספר 2==
| |
| בהרצאה מספר 2 טענו שהקבוצה M={(x,y) : (x,y) is in [0,1] intersection Q} היא חסרת תכולה. כדי להוכיח זאת, אמרנו שכל קב' מלבנים שאיחודים מכיל את M סכום תכולם הוא לפחות 1. למה זה נכון? (למשל המלבנים המנוונים. הם מכילים את הנק', לא? וסכום תכולתם הוא 0.)
| |
| : בסיכום שנמצא באתר יש טעות בהגדרה/משפט (חלק 2) ואי-דיוק קטן.
| |
| : קודם כל, מספר תיבות הוא סופי, אנחנו לא מדברים על אוסף אינסופי של תיבות לא חשוב באיזה חלק של משפט.
| |
| : ועכשיו תיקון ל-2: אוסף סופי של תיבות שאיחודם מכיל את <math>A</math> (הם בעצמם לא מוכלים ב-<math>A</math>) (השאר נכון)
| |
| : בקשר למספרים רציונליים - קבוצה M מכילה אף תיבה (רק מנוונות), לכן ברור כי <math>\sum{V(T_i)}=0</math>. מצד שני, <math>\sum{V(S_i)}\ge 1</math> (אני מזכיר שמדובר במספר סופי [[של]] תיבות ושבין כל שני מספרים רציונאליים שוניים קיים מספר רציונאלי נוסף).--[[משתמש:Grisha|Grisha]] 16:42, 30 באוגוסט 2011 (IDT)
| |
|
| |
|
| ::תודה רבה (:
| |
|
| |
|
| ==שאלה בקשר לפתרון תרגיל 1== | | ==מבחן מועד א'== |
| בשאלה 9 בתרגיל 1, נתונים 4 קודקודים של טטראדר וצריך לחשב את נפחו. לא הבנתי את דרך הפתרון - חישבנו את נפח המקבילית המתאימה? למה זה דווקא הדטרמיננטה הזו? (למה הצלעות שפורשות את המקבילית הן דווקא הקודקודים של הטטראדר..) אשמח לתשובה.
| | מישהו יכול להעלות בבקשה את מבחן מועד א? |
| : נפח של טטרהדר <math>V = \frac{1}{3} S\,h \,</math> כאשר S הוא שטח הבסיס. כיוון שנקודה <math>p_1</math> מתלכדת עם הראשית, נבחר, בה"כ: <math>a_1=p_2-p_1,\,a_2=p_3-p_1,\,a_3=q-p_1\,</math>. לכן <math>S = \frac{1}{2} |a_1\times a_2| \,</math>. מכאן ברור כי <math>V = \frac{1}{6} |a_3\cdot a_1\times a_2|= \frac{1}{6} |det(a_1,a_2,a_3)|\,</math>. --[[משתמש:Grisha|Grisha]] 16:18, 31 באוגוסט 2011 (IDT)
| | ואם אפשר גם את הפתרון |
| | - המבחן הועלה --[[משתמש:Grisha|Grisha]] 14:07, 3 בנובמבר 2011 (IST) |
|
| |
|
| ==שאלה== | | ==מבחן מועד ב'== |
| האם מסילות שקולות תמיד קובעות את אותו הקו?
| |