אינטגרל מסויים: הבדלים בין גרסאות בדף
יהודה שמחה (שיחה | תרומות) |
יהודה שמחה (שיחה | תרומות) |
||
שורה 19: | שורה 19: | ||
:<math>M_k=\sup\Big\{D(x)|x_{k-1}\le x\le x_k\Big\}=1</math> | :<math>M_k=\sup\Big\{D(x)|x_{k-1}\le x\le x_k\Big\}=1</math> | ||
ולכן '''כל''' [[סכום דרבו]] תחתון שווה | ולכן '''כל''' [[סכום דרבו|סכום דארבו]] תחתון שווה | ||
:<math>\sum_k0\cdot\Delta_k=0</math> | :<math>\sum_k0\cdot\Delta_k=0</math> | ||
וכמו כן '''כל''' [[סכום דרבו]] עליון שווה | וכמו כן '''כל''' [[סכום דרבו|סכום דארבו]] עליון שווה | ||
:<math>\sum_k1\cdot\Delta_k=\sum_k\Delta_k=\Big|[0,1]\Big|=1-0=1</math> | :<math>\sum_k1\cdot\Delta_k=\sum_k\Delta_k=\Big|[0,1]\Big|=1-0=1</math> | ||
גרסה אחרונה מ־15:21, 12 בפברואר 2017
הגדרה
תהי [math]\displaystyle{ f }[/math] פונקציה ממשית המוגדרת וחסומה בקטע [math]\displaystyle{ (a,b) }[/math] . אזי ישנן שתי הגדרות שקולות לאינטגרל המסוים של [math]\displaystyle{ f }[/math] בקטע:
- הגדרה לפי דארבו: אם גבול סכומי דארבו התחתונים קיים ושווה לגבול סכומי דארבו העליונים אזי הפונקציה [math]\displaystyle{ f }[/math] אינטגרבילית בקטע והאינטגרל המסוים בקטע שווה לגבול סכומי דארבו.
- הגדרה לפי רימאן: אם גבול סכומי רימאן קיים אזי [math]\displaystyle{ f }[/math] אינטגרבילית בקטע והאינטגרל המסוים בקטע שווה לגבול סכומי רימאן.
דוגמאות
פונקצית דיריכלה
הוכח כי הפונקציה הבאה אינה אינטגרבילית בקטע [math]\displaystyle{ [0,1] }[/math] :
- [math]\displaystyle{ D(x)=\begin{cases}1&x\in\Q\\0&x\notin\Q\end{cases} }[/math]
- הוכחה.
כיון שבכל חלוקה ובכל קטע קיימות גם נקודה רציונאלית וגם נקודה אי-רציונאלית, מתקיים לכל קטע:
- [math]\displaystyle{ m_k=\inf\Big\{D(x)|x_{k-1}\le x\le x_k\Big\}=0 }[/math]
- [math]\displaystyle{ M_k=\sup\Big\{D(x)|x_{k-1}\le x\le x_k\Big\}=1 }[/math]
ולכן כל סכום דארבו תחתון שווה
- [math]\displaystyle{ \sum_k0\cdot\Delta_k=0 }[/math]
וכמו כן כל סכום דארבו עליון שווה
- [math]\displaystyle{ \sum_k1\cdot\Delta_k=\sum_k\Delta_k=\Big|[0,1]\Big|=1-0=1 }[/math]
שכן סכום אורכי כל תתי-הקטעים של החלוקה, שווה לאורך הקטע כולו.
אם כך, גבול סכומי דארבו התחתונים הנו [math]\displaystyle{ 0 }[/math] והוא שונה מגבול סכומי דארבו העליונים שהוא [math]\displaystyle{ 1 }[/math], ולכן הפונקציה אינה אינטגרבילית בקטע.
פונקצית רימאן
הוכח כי הפונקציה הבאה אינטגרבילית בקטע [math]\displaystyle{ [0,1] }[/math] , וכי מתקיים [math]\displaystyle{ \displaystyle\int\limits_0^1 R(x)dx=0 }[/math]
- [math]\displaystyle{ R(x)=\begin{cases} \frac1{q}&x=\frac{p}{q}\\0&x\notin\Q\end{cases} }[/math]
כאשר [math]\displaystyle{ \frac{p}{q} }[/math] הוא השבר המצומצם של [math]\displaystyle{ x }[/math].
- הוכחה.
באופן דומה לתרגיל על פונקציית דיריכלה, קל לראות כי גבול סכומי דארבו התחתונים הוא [math]\displaystyle{ 0 }[/math]. לכן ניתן להוכיח כי גבול סכומי דרבו העליונים גם הוא [math]\displaystyle{ 0 }[/math].
יהי [math]\displaystyle{ \epsilon\gt 0 }[/math] . צריך למצוא [math]\displaystyle{ \delta\gt 0 }[/math] כך שלכל חלוקה עם פרמטר חלוקה קטן מ- [math]\displaystyle{ \delta }[/math] , מתקיים שמרחק סכום הדארבו העליון שלה מ- [math]\displaystyle{ 0 }[/math] קטן מ- [math]\displaystyle{ \epsilon }[/math] .
כיון שמדובר בפונקציה חיובית, והגבול הנו [math]\displaystyle{ 0 }[/math] , צריך להוכיח שלכל חלוקה סכום הדארבו העליון קטן מ- [math]\displaystyle{ \epsilon }[/math] .
כעת נראה כי לכל מספר טבעי [math]\displaystyle{ q }[/math] מספר הנקודות בקטע בהן [math]\displaystyle{ R(x)\ge\frac1{q} }[/math] הוא סופי, ונסמן מספר זה ב- [math]\displaystyle{ n_q }[/math] .
אכן, הנקודות היחידות המקיימות תנאי זה הן [math]\displaystyle{ 1,\frac12,\frac13,\frac23,\frac14,\frac24,\frac34,\ldots,\frac1{q},\ldots,\frac{q-1}{q} }[/math] (שימו לב שיתכן שחלק מהשברים הללו אינם מצומצמים ולכן יש אפילו פחות נקודות מאשר ברשימה הזו).
כעת, בהנתן חלוקה [math]\displaystyle{ P }[/math] כלשהי, לכל היותר [math]\displaystyle{ n_q }[/math] קטעים מכילים נקודות בהן [math]\displaystyle{ R\ge\frac1{q} }[/math] , ולכן שטח הפונקציה במלבנים המתאימים לחלקים אלה הוא לכל היותר [math]\displaystyle{ 1 }[/math] כפול אורך הקטע.
בשאר הקטעים, גובה הפונקציה חסום על-ידי [math]\displaystyle{ \frac1{q} }[/math] .
לכן סכום הדרבו העליון הוא לכל היותר סכום הקטעים משני הסוגים האלו, ויתרה על כך:
- [math]\displaystyle{ \overline{S}(R,P)\le\frac1{q}\cdot\Big|[0,1]\Big|+n_q\cdot\lambda(P) }[/math]
כאשר [math]\displaystyle{ \lambda(P) }[/math] הוא אורך הקטע הכי ארוך בחלוקה. בוודאי אורכי הקטעים המכילים את הנקודות הגבוהות קטנים או שווים לו.
בסה"כ, נבחר q כך ש:
- [math]\displaystyle{ \frac1{q}\lt \frac{\epsilon}{2} }[/math]
ולאחר מכן נבחר [math]\displaystyle{ \delta }[/math] כך ש:
- [math]\displaystyle{ n_q\delta\lt \frac{\epsilon}{2} }[/math]
וכך קיבלנו את שרצינו. [math]\displaystyle{ \blacksquare }[/math]
חישוב האינטגרל המסוים
קיימות מספר שיטות לחישוב האינטגרל המסוים, כשהנפוצה והשימושית ביותר היא שימוש בנוסחת ניוטון-לייבניץ.