שיטות אינטגרציה: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
מ (another way to express sin(x) as a result of the universal trigonometric substitution)
 
(9 גרסאות ביניים של משתמש אחר אחד אינן מוצגות)
שורה 1: שורה 1:
בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.
בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.


==אינטגרציה "רגילה"==
==אינטגרציה מיידית==
הכוונה היא לבצע את האינטגרל לפי חוקי הגזירה. לדוגמא,
אינטגרל מיידי הוא אינטגרל על פונקציה שאנחנו יודעים מי הקדומה שלה.


<math>\int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C</math>
לדוגמא: <math>\int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C</math>


===דף אינטגרלים===
[[מדיה:אינטגרלים.pdf|דף אינטגרליים מיידיים]]
[[מדיה:אינטגרלים.pdf|ראה כאן]]
 
===השלמה לריבוע===
כאשר נקבל פונקציה רציונאלית שבמונה שלה יש מספר ובמכנה שלה פולינום ממעלה שניה, ניתן להשלים את הפולינום לריבוע ולהעזר ב- <math>\arctan</math> .
 
====דוגמא====
<math>\int\frac{dx}{x^2+x+\frac{5}{4}}</math>
 
נעזר בהשלמה לריבוע של המכנה. נקבל:
 
<math>\int\frac{dx}{x^2+x+\frac{5}{4}}=\int\frac{dx}{\left(x+\frac{1}{2}\right)^2+1}=\arctan\left(x+\frac{1}{2}\right)+C</math>


==אינטגרציה בחלקים==
==אינטגרציה בחלקים==
שורה 46: שורה 35:
<math>\int\frac{\sin(2x)}{a+\sin^2(x)}dx</math> כאשר <math>a>0</math> .
<math>\int\frac{\sin(2x)}{a+\sin^2(x)}dx</math> כאשר <math>a>0</math> .


נבצע הצבה: <math>u=\sin^2(x)\ \Rightarrow\ du=2\sin(x)\cos(x)dx=\sin(2x)dx\</math>
נבצע הצבה<math>u=\sin^2(x)\</math> ולכן <math>du=2\sin(x)\cos(x)dx=\sin(2x)dx\</math>


מקבלים:
מקבלים:
שורה 54: שורה 43:


[[שיטת ההצבה|הרחבה]]
[[שיטת ההצבה|הרחבה]]
==פונקציה רציונאלית==
על מנת לחשב אינטגרל על פונקציה רציונאלית <math>f(x)=\frac{p(x)}{q(x)}</math> (כאשר <math>p(x),q(x)</math> פולינומים), עלינו לעקוב אחרי השלבים הבאים:
*אם דרגת המונה גדולה מדרגת המכנה, נבצע חילוק פולינומים.
*נבצע פירוק לשברים חלקיים.
*נחשב את האינטגרל של כל שבר חלקי.
ניתן לקרוא [[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|כאן]] את האלגוריתם המלא.
==הצבות אוניברסאליות==
'''הצבות אוניברסאליות''' הוא כינוי כללי להצבות המעבירות פונקציות ממשפחה מסוימת לצורה של [[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|פונקציה רציונאלית]] אותה אנחנו יודעים לפתור. שימו לב שכיון ופתרון פונקציה רציונאלית דורש פירוק פולינומים, לעתים המעבר לפונקציה רציונאלית לא יקדם אותנו לקראת פתרון הבעיה.
הצבות אוניברסאליות ידועות ניתן למצוא בקובץ הבא: (עד אשר מישהו יקליד אותו אל תוך הויקי...)
*[[מדיה:09Infi2Universal.pdf|הסבר על הצבות אוניברסאליות]]


==ההצבה הטריגונומטרית האוניברסלית==
==ההצבה הטריגונומטרית האוניברסלית==
שורה 67: שורה 71:


<math>\sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2}</math>
<math>\sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2}</math>
ובדרך אחרת:
<math>\tan(\frac{x}{2})=\frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})}=\frac{2 \cdot \sin(\frac{x}{2}) \cdot \cos(\frac{x}{2})}{2 \cos^2(\frac{x}{2})}=\frac{\sin(x)}{2 \cos^2(\frac{x}{2})}</math>
ולכן מתקיים
<math>\sin(x)=\tan(\frac{x}{2})\cdot 2 \cos^2(\frac{x}{2})=\frac{2u}{1+u^2}</math>


כמו כן, <math>x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du</math> .
כמו כן, <math>x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du</math> .


לסיכום,  
לסיכום,  
<math>\boxed{u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du}</math>
<math>u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du</math>


===דוגמא===
===דוגמא===
שורה 84: שורה 97:


[[מדיה:09Infi2Universal.pdf|הרחבה]]
[[מדיה:09Infi2Universal.pdf|הרחבה]]
==פירוק לשברים חלקיים==
כאשר נקבל פונקציה רציונאלית שבמונה שלה פולינום ממעלה נמוכה מאשר במכנה שלה, נרצה לפרק את השבר לשברים חלקיים אשר סכומם הוא השבר המקורי, וקל לבצע אינטגרל לכל אחד מהם בנפרד. ננסה לפרק אותו לגורמים לינאריים ולגורמים ממעלה שניה.
[[מדיה:שברים חלקיים.pdf|הסבר ודוגמא]]


==הצבות אוילר==
==הצבות אוילר==
שורה 144: שורה 152:


[[מדיה:09Infi2Universal.pdf|הרחבה]]
[[מדיה:09Infi2Universal.pdf|הרחבה]]
==פונקציה רציונאלית==
קיימים מספר מצבים עבור פונקציות רציונאליות <math>f(x)=\frac{p(x)}{q(x)}</math> (כאשר <math>p(x),q(x)</math> פולינומים). להלן המצבים:
===מצב ראשון <math>\deg(p)=\deg(q)-1</math>===
במצב כזה, <math>\deg(q')=\deg(p)</math> , לכן קיים קבוע <math>c</math> שעבורו <math>h=cp-q'</math> יהיה ממעלה יותר נמוכה, כלומר <math>\deg(h)<\deg(q)-1</math> . נקבל:
<math>\int f=\int\frac{p}{q}=\int\frac{\frac{h+q'}{c}}{q}=\frac{1}{c}\cdot\int\frac{h}{q}+\frac{\ln(|q|)}{c}\cdot</math> . עוברים למצב הבא.
===מצב שני <math>\deg(p)<\deg(q)-1</math>===
מפרקים לשברים חלקיים כפי שמוסבר בקובץ [[מדיה:שברים חלקיים.pdf|הזה]].
===מצב שלישי <math>\deg(p)\ge\deg(q)</math>===
מבצעים חילוק פולינומים וחוזרים למצבים הקודמים.
[[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|הרחבה]]


==סיכום==
==סיכום==
'''[[מדיה:אינטגרלים לא-מסוימים.pdf|דף מסכם]]'''
'''[[מדיה:אינטגרלים לא-מסוימים.pdf|דף מסכם]]'''

גרסה אחרונה מ־13:52, 15 במרץ 2019

בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.

אינטגרציה מיידית

אינטגרל מיידי הוא אינטגרל על פונקציה שאנחנו יודעים מי הקדומה שלה.

לדוגמא: [math]\displaystyle{ \int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C }[/math]

דף אינטגרליים מיידיים

אינטגרציה בחלקים

לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים:

[math]\displaystyle{ \int f'g=f\cdot g-\int fg' }[/math] (ניתן לוודא על ידי גזירה).

דוגמא

[math]\displaystyle{ \int\ln(x)dx }[/math]

לפי השיטה, נסמן [math]\displaystyle{ f'(x)=1\ ,\ g(x)=\ln(x) }[/math] .

לכן נקבל [math]\displaystyle{ f(x)=x\ ,\ g'(x)=\frac{1}{x} }[/math] .

לפי נוסחת אינטגרציה בחלקים, נקבל:

[math]\displaystyle{ \int\ln(x)dx=x\ln(x)-\int x\cdot\frac{1}{x}dx=x\ln(x)-\int 1\,dx=x\ln(x)-x+C }[/math]


הרחבה

אינטגרציה בהצבה

לפי כלל השרשרת, אנו מקבלים:

[math]\displaystyle{ \int f(g(x))\cdot g'(x)dx=F(g(x))+C }[/math] (ניתן לוודא על-ידי גזירה).

דוגמא

[math]\displaystyle{ \int\frac{\sin(2x)}{a+\sin^2(x)}dx }[/math] כאשר [math]\displaystyle{ a\gt 0 }[/math] .

נבצע הצבה[math]\displaystyle{ u=\sin^2(x)\ }[/math] ולכן [math]\displaystyle{ du=2\sin(x)\cos(x)dx=\sin(2x)dx\ }[/math]

מקבלים:

[math]\displaystyle{ \int\frac{\sin(2x)}{a+\sin^2(x)}dx=\int\frac{du}{a+u}=\ln(a+u)+C=\ln\big(a+\sin^2(x)\big)+C }[/math] (נזכור כי [math]\displaystyle{ a+u\gt 0 }[/math] , לכן אין צורך בערך מוחלט).


הרחבה

פונקציה רציונאלית

על מנת לחשב אינטגרל על פונקציה רציונאלית [math]\displaystyle{ f(x)=\frac{p(x)}{q(x)} }[/math] (כאשר [math]\displaystyle{ p(x),q(x) }[/math] פולינומים), עלינו לעקוב אחרי השלבים הבאים:

  • אם דרגת המונה גדולה מדרגת המכנה, נבצע חילוק פולינומים.
  • נבצע פירוק לשברים חלקיים.
  • נחשב את האינטגרל של כל שבר חלקי.

ניתן לקרוא כאן את האלגוריתם המלא.

הצבות אוניברסאליות

הצבות אוניברסאליות הוא כינוי כללי להצבות המעבירות פונקציות ממשפחה מסוימת לצורה של פונקציה רציונאלית אותה אנחנו יודעים לפתור. שימו לב שכיון ופתרון פונקציה רציונאלית דורש פירוק פולינומים, לעתים המעבר לפונקציה רציונאלית לא יקדם אותנו לקראת פתרון הבעיה.

הצבות אוניברסאליות ידועות ניתן למצוא בקובץ הבא: (עד אשר מישהו יקליד אותו אל תוך הויקי...)

ההצבה הטריגונומטרית האוניברסלית

בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב [math]\displaystyle{ u=\tan\left(\frac{x}{2}\right) }[/math] .

נזכור כי [math]\displaystyle{ 1+\tan^2(\alpha)=\frac{1}{\cos^2(\alpha)} }[/math] , ונקבל [math]\displaystyle{ \cos^2\left(\frac{x}{2}\right)=\frac{1}{1+\tan^2\left(\frac{x}{2}\right)}=\frac{1}{1+u^2} }[/math] .

נקבל בנוסף [math]\displaystyle{ \cos(x)=2\cos^2\left(\frac{x}{2}\right)-1=\frac{2}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2} }[/math] .

לכן:

[math]\displaystyle{ \sin(x)=\sqrt{1-\cos^2(x)}=\sqrt{1-\left(\frac{1-u^2}{1+u^2}\right)^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}= }[/math]

[math]\displaystyle{ \sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2} }[/math]

ובדרך אחרת:

[math]\displaystyle{ \tan(\frac{x}{2})=\frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})}=\frac{2 \cdot \sin(\frac{x}{2}) \cdot \cos(\frac{x}{2})}{2 \cos^2(\frac{x}{2})}=\frac{\sin(x)}{2 \cos^2(\frac{x}{2})} }[/math]

ולכן מתקיים

[math]\displaystyle{ \sin(x)=\tan(\frac{x}{2})\cdot 2 \cos^2(\frac{x}{2})=\frac{2u}{1+u^2} }[/math]


כמו כן, [math]\displaystyle{ x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du }[/math] .

לסיכום,

[math]\displaystyle{ u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du }[/math]

דוגמא

[math]\displaystyle{ \int\frac{dx}{2+2\sin(x)} }[/math]

נעזר בהצבה הטריגונומטרית האוניברסלית. נציב [math]\displaystyle{ u=\tan\left(\frac{x}{2}\right) }[/math] . נקבל:

[math]\displaystyle{ \int\frac{dx}{2+2\sin(x)}=\frac{1}{2}\int\frac{1}{1+\frac{2u}{1+u^2}}\cdot\frac{2}{1+u^2}du=\frac{1}{2}\int\frac{1+u^2}{u^2+2u+1}\cdot\frac{2}{1+u^2}du }[/math]

[math]\displaystyle{ =\int\frac{du}{(u+1)^2}=-\frac{1}{u+1}+C=-\frac{1}{1+\tan\left(\frac{x}{2}\right)}+C }[/math]


הרחבה

הצבות אוילר

הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם [math]\displaystyle{ x }[/math] ו- [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .

אוילר 1 - הפולינום פריק

נניח כי הפולינום [math]\displaystyle{ ax^2+bx+c }[/math] פריק (מעל הממשיים, כמובן). נסמן [math]\displaystyle{ ax^2+bx+c=a(x-\alpha)(x-\beta) }[/math] .

הצבת אוילר: נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=u(x-\alpha) }[/math] (אפשר גם את השורש השני). נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math] , ונוכל למצוא גם את [math]\displaystyle{ x }[/math] וגם את [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .

דוגמא

[math]\displaystyle{ \int\frac{dx}{x\sqrt{x^2-7x+6}} }[/math]


נעזר בהצבת אוילר: נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=u(x-1) }[/math] .


לכן [math]\displaystyle{ (x-1)(x-6)=u^2(x-1)^2 }[/math] , כלומר [math]\displaystyle{ x-6=u^2(x-1) }[/math] , ומכאן [math]\displaystyle{ x=\frac{u^2-6}{u^2-1} }[/math] .


לכן [math]\displaystyle{ dx=\frac{2u(u^2-1)-2u(u^2-6)}{(u^2-1)^2}du=\frac{10u}{(1-u^2)^2}du }[/math] .


בנוסף, [math]\displaystyle{ \sqrt{x^2-7x+6}=u(x-1)=u\left(\frac{u^2-6}{u^2-1}-1\right)=-\frac{5u}{u^2-1} }[/math]

מקבלים:

[math]\displaystyle{ \int\frac{dx}{x\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2-6}{u^2-1}\cdot\frac{5u}{u^2-1}}\cdot\frac{10u}{(1-u^2)^2}du=-2\int\frac{du}{u^2-6} }[/math] כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.

אוילר 2 - פולינום יותר כללי

ישנן שתי אפשרויות:

  1. בהינתן [math]\displaystyle{ a\gt 0 }[/math] , נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=\sqrt{a}x+u }[/math] .
  2. בהינתן [math]\displaystyle{ c\gt 0 }[/math] , נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=xu+\sqrt c }[/math] .

נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math] , ונוכל למצוא את [math]\displaystyle{ dx }[/math] ואת [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .

דוגמא

[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-7x+6}} }[/math]

ניעזר בהצבת אוילר (האופציה הראשונה): נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u }[/math] .


נעלה בריבוע ונקבל [math]\displaystyle{ x^2-7x+6=x^2+2xu+u^2 }[/math] , כלומר [math]\displaystyle{ x=\frac{6-u^2}{2u+7} }[/math] .


לכן [math]\displaystyle{ dx=\frac{-2u(2u+7)-2(6-u^2)}{(2u+7)^2}du=-2\cdot\frac{u^2+7u+6}{(2u+7)^2}du }[/math] ,


וכן [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7} }[/math] .

מקבלים:

[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2+7u+6}{2u+7}}\cdot2\cdot\frac{u^2+7u+6}{(2u+7)^2}du=-\int\frac{2}{2u+7}du=-\ln(|2u+7|)+C=-\ln\left(\left|\sqrt{x^2-7x+6}-x\right|\right)+C }[/math]


הרחבה

סיכום

דף מסכם