88-373 תשפא סמסטר ב: הבדלים בין גרסאות בדף
אין תקציר עריכה |
|||
שורה 23: | שורה 23: | ||
תרגילי הבית אינם להגשה, אך יעזרו כמובן לתרגול שלכם. מוזמנים לפנות בכל שאלה לגביהם. | תרגילי הבית אינם להגשה, אך יעזרו כמובן לתרגול שלכם. מוזמנים לפנות בכל שאלה לגביהם. | ||
* [[מדיה:88373 2021 ex1.pdf|תרגיל 1]] | * [[מדיה:88373 2021 ex1.pdf|תרגיל 1]], [[מדיה:88373 2021 ex1-sol.pdf|פתרון תרגיל 1]] | ||
* [[מדיה:88373 2021 ex2.pdf|תרגיל 2]] | * [[מדיה:88373 2021 ex2.pdf|תרגיל 2]] | ||
* [[מדיה:88373 2021 ex3.pdf|תרגיל 3]] | * [[מדיה:88373 2021 ex3.pdf|תרגיל 3]] |
גרסה מ־17:08, 25 במרץ 2021
88-373 הסתברות וסטטיסטיקה מתמטית
מרצה: פרופ' גדעון עמיר.
מתרגל: גיא בלשר.
שעות קבלה: בתיאום מראש.
קישורים
- שאלות ותשובות (כן! גם אתם יכולים לשאול ולענות.)
הודעות
מערכי התרגול
- תרגול 1
- תרגול 2, ופתרון מסודר יותר לשאלה מסוף התרגול בנושא חוק ה-0-1 של קולמוגורוב.
- תרגול 3
תרגילי בית
תרגילי הבית אינם להגשה, אך יעזרו כמובן לתרגול שלכם. מוזמנים לפנות בכל שאלה לגביהם.
חומרי עזר
מידת סטילטיס
אם [math]\displaystyle{ F }[/math] היא פונקציה מונוטונית לא יורדת ורציפה מימין, אפשר להגדיר את מידת סטילטיס (Stieltjes) המתאימה לה לפי [math]\displaystyle{ \mu_F\left((a,b]\right)=F(b)-F(a) }[/math]. כיוון שאוסף הקטעים הזה יוצר את [math]\displaystyle{ \sigma }[/math]-אלגברת בורל, זה מגדיר מידה על כל [math]\displaystyle{ \mathbb{B}(\mathbb{R}) }[/math]. חומרים לגבי מידת סטילטיס אפשר למצוא כאן (על הגדרת המידה) וכאן (על חישוב אינטגרל ביחס למידה הזו).
אנחנו לא נבצע כמעט חישובים עם מידת סטילטיס ישירות, אבל טוב להכיר את ההגדרה ולדעת מה היא אומרת. בהתאם, הוספתי שאלה בתרגיל הבית על חישוב הסתברויות ותוחלת עם מידת סטילטיס.