שיחה:88-132 תשעג סמסטר א: הבדלים בין גרסאות בדף

מתוך Math-Wiki
 
(143 גרסאות ביניים של 28 משתמשים אינן מוצגות)
שורה 5: שורה 5:


*[[שיחה:88-132 תשעג סמסטר א/ארכיון 1|ארכיון שאלות ותשובות 1]]
*[[שיחה:88-132 תשעג סמסטר א/ארכיון 1|ארכיון שאלות ותשובות 1]]
*[[שיחה:88-132 תשעג סמסטר א/ארכיון 2|ארכיון שאלות ותשובות 2]]
=שאלות=
=שאלות=


שורה 13: שורה 14:
</font> --[[משתמש:מני ש.|מני]] 18:27, 31 באוקטובר 2012 (IST)
</font> --[[משתמש:מני ש.|מני]] 18:27, 31 באוקטובר 2012 (IST)


== תרגיל 5 שאלה 6 ==
== (מתמטיקאים) תרגיל 7 שאלה 5 ==


כדי להפריך התכנסות של טור מראים שהאיבר הכללי לא שואף לאפס.
השאלה שלי האם אפשר להפריד באיבר הכללי ולהראות פעם אחת על האיבר הכללי הזוגי (כאשר n זוגי) שהוא לא מתכנס לאפס ופעם שניה על האיבר הכללי האי זוגי שהוא לא מתכנס לאפס. האם די בכך כדי לטעון שהאיבר הכללי לא מתכנס לאפס?


נניח יש לי שתי סדרות והגבולות החלקיים של An זו קבוצה (A= (-1,1, והגבולות החלקיים של Bn זו קבוצה
(B=(0,2. נתון לי ש Cn=An+Bn וקבוצה C זה הגבולות החלקיים של Cn. מזה אומר??.. מהי קבוצה C זה האיחוד של כל הגבולות החלקיים כלומר (1-,1,2,0) או שזה חיבור שלהם כלומר (1,3-), לא ממש ברור לי הסכום של הסדרות אשמח לעזרה כלשהי כדי לפתור את השאלה, תודה!
::הקבוצה C היא כל הגבולות החלקיים הממשיים של הסדרה <math>c_n</math>. גבול חלקי ממשי של <math>c_n</math> הוא מספר <math>L\in \Bbb R</math> כך שקיימת תת סדרה
<math>c_{n_k}</math> המתכנסת אליו. אני יכול להציע לך לקחת בהתחלה אפילו שתי סדרות שהן מתכנסות <math>a_n,b_n</math> ולחשוב מה תהיה הקבוצה C במצב זה. אח"כ אפשר לחשוב על סדרות שלא מתכנסות ושיש להן יותר מגבול חלקי אחד ולחשוב מה קורה במצב זה. --[[משתמש:מני ש.|מני]] 23:07, 25 בנובמבר 2012 (IST)


== שאלה כללית ==
היי,
'''מקווה שאני לא טועה ומטעה''', אבל לדעתי מספיק להוכיח על אחת מתתי הסדרות (זוגיים או אי זוגיים) שאינה שואפת לאפס, בכדי להוכיח שכל הסדרה שאינה שואפת לאפס.
הרי מתקיים: אם סדרה an שואפת ל-l אזי כל תת-סדרה ank שואפת ל-l. וזה בדיוק כמו: אם יש תת-סדרה ank שלא שואפת ל-l, אזי הסדרה an אינה שואפת ל-l.
 
אגב, יש עוד דרכים להפריך התכנסות של טור (להוכיח שסדרת הסכומים החלקיים לא מתכנסת לגבול סופי או להשתמש באחד מהמבחנים לטורים חיוביים- של קושי וחבריו). בהצלחה.
 
== אפשר בבקשה לפרסם את תרגיל 8 למתמטיקאים? ==
 
תודה!
 
== תרגיל מס' 8 שאלה 1 ==
 
לפי לייבניץ, אם an היא סדרה מונוטונית יורדת של מס' חיובים השואפת ל-0, אזי הטור מתכנס, האם נכון גם לגבי תתי-סדרות, זוגיים ואי-זוגיים? האם ניתן להראות מונוטיות יורדת עבור שני איברים זוגיים ולאחר מכן, עבור שני איברים א"ז?
תודה.
 
 
(לא מתרגל / מרצה) זה אכן אפשרי, אך זה לא אומר כלום על מונוטוניות הסדרה כולה, שכן יכול להיות שגם הזוגיים וגם האי זוגיים מונוטוניים עולים, אבל לכל <math>n\in\mathbb{N}</math> מתקיים <math>a_{2n}>a_{2n+1}</math>, ואז אין מונוטוניות של הסדרה כולה --[[משתמש:גיא|גיא]] 17:40, 23 בדצמבר 2012 (IST)
 
== תרגיל 8 שאלה 5 ==
 
חסר במקרה נתון של מונוטוניות??.. כי לא ברור איך לפתור.. או שצריך לחלק למיקרים אם Bn מונוטונית ואם לא..
 
 
(לא מתרגל / מרצה) לא חסר שום נתון. באיזה כיוון את/ה מתקשה להוכיח? --[[משתמש:גיא|גיא]] 06:47, 26 בדצמבר 2012 (IST)
 
בשני הכיוונים למען האמת, נניח בכיוון הישר הטור An מתכנס בהחלט אז מה זה נותן לי??.. שהסידרה שואפת לאפס אבל לא נתון מונוטונית אז אי אפשר לפי דריכלה כי גם לא נתור '''שהטור''' Bn חסום, אבל גם אי אפשר abel כי מי אמר שBn מונוטונית יכולה להיות חסומה ולא מונוטונית... וגם לפי לייבניץ אני לא רואה כיוון כי לא נתון ש An מונוטונית בכלל.. בקיצור איך מתקדמים??..
::בכיוון שציינת שווה לנסות להוכיח יותר, עד כמה שזה נשמע מוזר, שהטור <math>\sum_{n=1}^\infty a_nb_n</math> מתכנס אפילו בהחלט לכל סדרה חסומה. אפשר בהקשר זה לחשוב על מבחני התכנסות נוספים. --[[משתמש:מני ש.|מני]] 10:45, 26 בדצמבר 2012 (IST)
 
== תרגיל 8 ==
 
אם נתונה סדרה חסומה אזי בהכרח הטור של הסדרה חסום???.. ולהיפך?.. אם טור חסום אזי הסדרה חסומה??..
 
 
(לא מתרגל / מרצה) בוודאי שלא. לדוגמה ניקח את הטור ההרמוני <math>\sum _{n=1}^\infty \frac{1}{n}</math> - הסדרה <math>\frac{1}{n}</math> חסומה ע"י 1, אבל טורה מתבדר ולכן אינו חסום. לגבי הכיוון השני, אני חושב שגם לו ניתן למצוא הפרכה אבל אני לא בטוח סופית --[[משתמש:גיא|גיא]] 06:45, 26 בדצמבר 2012 (IST)
::הכיוון השני כן נכון. כי אם קיים <math>M>0</math> כך ש<math> \forall n \in \mathbb{N} \  M\geq |S_n|</math>
אז<math> \forall n \in \mathbb{N} \  |a_{n+1}|=|S_{n+1}-S_n|\leq |S_{n+1}|+|S_n|\leq 2M</math>. --[[משתמש:מני ש.|מני]] 10:56, 26 בדצמבר 2012 (IST)
 
== זהויות טריגונומטריות ==
 
תוכלו בבקשה להעלות קובץ עם הזהויות הטריגונומטריות החיוניות עבורנו?
יש בעמוד הראשי קישור לויקיפדיה, אבל יש שם המון זהויות...
 
תודה
::אני לא יודע בשלב זה  לספק רשימת זהויות חיוניות. אני מניח שכל הזהויות שניתקלים בהן בהרצאה, תרגול/ש"ב הן הזהויות ההכרחיות. דברים שכן חשובים ואני יכול להצביע עליהם אלו הזהויות של קוסינוס וסינוס זווית כפולה וגם מעבר ממכפלה לסכום (יש טבלה כזו בקישור שציינת). --[[משתמש:מני ש.|מני]] 19:51, 26 בדצמבר 2012 (IST)
 
== שלילת התכנסות טור ==
 
האם על סמך התנאי an+1/an>1 ניתן להסיק ש lim an שונה מ-0 ? ובכך לקבוע ישירות התבדרות הטור.
 
*(לא מתרגל) כן, כי אם כך (החל ממקום מסוים) איברי הסדרה עולים ממש, וכן חיוביים ולכן לא שואפים ל-0 בטוח. לכן לפי הטענה:
 
אם הטור מתכנס אז הסדרה שואפת לאפס.
 
אפשר להסיק שהטור מתבדר.
::נכון. תובנה יפה. בהמשך לכך שימו לב שאם התנאי <math>\frac{a_{n+1}}{a_n}>1</math> מתקיים נניח החל מ<math>n_0</math> אז אם
<math>a_{n_0}</math> שלילי  אז התנאי דווקא יגרום לכך שהסדרה מונוטונית יורדת מאותו מקום,וגם אז הגבול לא יכול להיות אפס. כי אם תהיה התכנסות הגבול יהיה קטן או שווה ל<math>a_{n_0}</math> שהוא שלילי. --[[משתמש:מני ש.|מני]] 20:02, 26 בדצמבר 2012 (IST)
 
== תרגיל 6 שאלת בונוס (מתמטיקאים) ==
 
נתון בשאלה שמתקיים: <math>\lim_{n\to \infty}  (a_{n+1}-a_{n})=0</math>
כלומר, לכל <math>\varepsilon> 0 </math>  קיים <math>n_{0}</math>  שהחל ממנו <math>\left |a_{n+1}-a_{n}  \right |< \varepsilon</math>
 
ניסיתי להשתמש בקושי ולטעון:
<math>\left | a_{n+p}-a_{n} \right |=\left | a_{n+p}-a_{n+p-1}+a_{n+p-1}-a_{n+p-2}+...+a_{n+1}-a_{n} \right |\leq \left | a_{n+p}-a_{n+p-1} \right |+\left | {n+p-1}-a_{n+p-2} \right |+...+\left | a_{n+1}-a_{n} \right |
</math>
 
ולכל <math>n\geq n_{0}</math> מתקיים:
 
<math>\left | a_{n+p}-a_{n} \right |< \varepsilon +\varepsilon +...+\varepsilon =p\cdot \varepsilon </math>
 
 
נבחר <math>\varepsilon=\frac{\varepsilon _{0}}{p} \Rightarrow \varepsilon \cdot p=\varepsilon _{0}
</math>
 
ונקבל : לכל <math>\varepsilon _{0}</math> (בהתאם לבחירת <math>\varepsilon</math> כרצוננו):
 
 
<math>\left | a_{n+p}-a_{n}\right |< \varepsilon _{0}</math>
 
 
ולכן, לפי קושי, הסדרה מתכנסת לגבול סופי.
 
האם זה נכון?
::לא. יש בעיה עם הכמתים (קיים,לכל).  בהגדרה לפי קושי, אם אשתמש בסימונים שלך צריך להוכיח שלכל <math>\epsilon_0</math> קיים <math>n_0</math> כך שלכל <math>n\geq n_0</math> '''ולכל''' <math>p</math> טבעי<math>\left | a_{n+p}-a_{n}\right |< \varepsilon _{0}</math>.
 
אני אציג מה שלא עובד בהוכחה שציינת. בגדול אי אפשר יהיה לקבוע מהו <math>n_0</math>. למה?
 
נציב לפי ההצעה שלך <math>p</math> טבעי מסוים ועבור <math>\varepsilon _0</math> מסוים,
<math>\epsilon=\frac{\varepsilon_0}{p}</math> ונשתמש בגבול הנתון ונסיק שקיים <math>n_0</math> שתלוי  ב <math>\varepsilon</math> ולכן '''תלוי ב<math>p</math> '''  כך  שלכל <math>n\geq n_{0}</math> ועבור  אותו <math>p</math> ספציפי <math>\left | a_{n+p}-a_{n}\right |< \varepsilon _{0}</math>. אבל 
כדי להוכיח קריטריון קושי צריך שהנ"ל יתקיים '''לכל <math>p</math>''' ולא ל <math>p</math> מסויים.
אם היינו משנים את <math>p</math> גם <math>n_0</math> היה יכול להשתנות (כי הוא תלוי ב<math>\varepsilon</math> '''שתלוי ב<math>p</math>''').
 
 
אגב, אי אפשר להוכיח שקריטריון קושי מתקיים ושהסדרה מתכנסת שכן קיימות דוגמאות נגדיות לסדרות שלא יתכנסו אך עדיין יקימו את התנאי בשאלה. --[[משתמש:מני ש.|מני]] 11:50, 28 בדצמבר 2012 (IST)
 
 
נכון. תודה (:
 
== מועד הבוחן ==
 
מתי יתקיים הבוחן השני לתיכוניסטים?
 


אם מבקשים ממני למצוא סכום של טור כלשהו, אני יכול לצאת מנקודת הנחה שהטור מתכנס או שאני צריך להוכיח זאת?
(לא מתרגל / מרצה) התאריך אמור להתפרסם בקרוב :) --[[משתמש:גיא|גיא]] 21:58, 1 בינואר 2013 (IST)


== תיכוניסטים תרגיל 9 שאלה 3 ==


???
האם L ממשי או שייך לקו הממשי המורחב(כלומר כולל פלוס ומינוס אינסוף)?
::אם תמצא את הסכום ממילא תוכיח באותו הזמן גם שהוא מתכנס. --[[משתמש:מני ש.|מני]] 14:16, 27 בנובמבר 2012 (IST)
:ממשי --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== פרטים על הבוחן ==
== תרגיל 9 שאלה 1 ==


איפה אני יכול למצוא פרטים על הבוחן כמו מתי? איפה? חומר?
כאשר רוצים לדרוש ערך מוחלט גדול מחיובי כלשהו (חסם לפי קושי)..אפשר לבחור את דלתא עצמה??.. כי ידוע שהיא חיובית, תודה!
::אם הבנתי נכון את השאלה אז התשובה היא לא. אנחנו לא יודעים שדלתא חיובית. אנחנו רוצים להוכיח שקיימת דלתא חיובית כך ש...


(לא מתרגל / מרצה) של איזו קבוצה? --[[משתמש:גיא|גיא]] 18:29, 26 בנובמבר 2012 (IST)
חוץ מזה אנחנו לוקחים איקס לפי דלתא למשל <math>\delta>|x-1|>0</math> כשבודקים גבול פונקציה בנקודה 1.
של התיכוניסטים
בעצם כתוב כאן קיימת דלתא כך שלכל איקס המקיים <math>\delta>|x-1|>0</math>. לכן האיקסים אמורים להיות תלויים בדלתא ולא ההיפך... אי אפשר להגיד פתאום ש <math>|x+5|>\delta</math>. הרעיון הוא להוסיף אילוץ על דלתא שלא תלוי באיקס למשל שדלתא קטנה משליש ואז דווקא לקבל מידע על הטווח של האיקסים לפי  <math>\delta>|x-1|>0</math> בדוגמא שלי --[[משתמש:מני ש.|מני]] 20:28, 2 בינואר 2013 (IST)


== תיכוניסטים תרגיל 9 שאלה 2b ==


(לא מתרגל / מרצה) הבוחן ב-16.12. החומר יינתן ביום ראשון בתרגולים. מיקום - של שיעור ההשלמה. בקיצור - יישלחו פרטים מדויקים בהמשך :) --[[משתמש:גיא|גיא]] 22:48, 26 בנובמבר 2012 (IST)
ניתן להניח שאם
<math> \lim_{x \rightarrow - \infty }f(x)=- \infty</math> וגם <math> \lim_{x \rightarrow - \infty }g(x)=- \infty </math>
אז <math> \lim_{x \rightarrow - \infty }f(x)g(x)= \infty </math> ?


== שאלה לגבי תרגיל 5 ==


האם זה נכון לומר שאם cn=an+bn אז תת הסדרה cnk היא ank+bnk?
(לא מתרגל / מרצה) כן, לפי אריתמטיקה של גבולות --[[משתמש:גיא|גיא]] 20:07, 4 בינואר 2013 (IST)
::כן.--[[משתמש:מני ש.|מני]] 14:16, 27 בנובמבר 2012 (IST)


== תרגיל 6 שאלה 5g (תיכוניסטים) ==
== שאלה כללית ==


צריך לחלק למיקרים של a?
איך אני מחשב גבולות חד צדדיים של פונקציות?
::אולי. זה חלק מהשאלה. --[[משתמש:מני ש.|מני]] 18:36, 28 בנובמבר 2012 (IST)


== משפט דלאמבר ==
*(לא מתרגל) באופן כללי יש הרבה דרכים, ומשפטי עזר לנושא. לדוגמא, אפשר לחשב על ידי אריתמטיקה, או על ידי משפט הסנדוויץ'. בנוסף אפשר לדעת על קיומו של גבול חד צדדי לפי המשפטון הבא:


אם יוצא לי שD שואף לאינסוף, האם בידוע שהטור מתבדר?
אם f פונקציה חסומה ומונוטונית בקטע סגור [a,b] אזי קיימים הגבול מימין של a והגבול משמאל של b. דבר נחמד נוסף הוא שבמקרה בו הפונקציה עולה לדוגמא, הגבול השמאלי של b הוא הsup של כל ה(f(x בקטע, ובנוגע לגבול הימני בa הוא הinf בהתאמה. ביורדת בדומה. כלומר, אפשר לפתור את הבעיה עם חסמים במידה ומתרחש מקרה כמו המתואר לעיל.
::בהנחה שבD כוונתך לגבול התחתון של המנה אז התשובה היא כן. --[[משתמש:מני ש.|מני]] 18:38, 28 בנובמבר 2012 (IST)


== תרגיל 6 שאלה 5 d (תיכוניסטים) ==
דרך נוספת היא ממש לפי ההגדרה - לפי קושי/היינה, אבל לרוב זה לא נחמד ולא שימושי כל כך.


הסכום לא צריך להתחיל מ n = 2?
== רציפות במידה שווה ==
::כן. --[[משתמש:מני ש.|מני]] 18:39, 28 בנובמבר 2012 (IST)


== תרגיל 6 (תיכוניסטים) ==
אפשר הסבר להבדל בין רציפות לבין רציפות במידה שווה מבחינת הגדרה? כי אמרו שהדלתא יכול להיות תלוי ב x, בעוד שבמידה שווה זה לא כך.


מותר להשתמש בעובדה שהסכום <math>\sum\frac{1}{n^p}</math> מתכנס אם"ם p>1?
לא הבנתי כל-כך למה זה נכון..
::כן. --[[משתמש:מני ש.|מני]] 18:39, 28 בנובמבר 2012 (IST)


== מבחן ההשוואה הגבולי ==


מה קורה אם הגבול <math>\lim_{n\rightarrow\infty}\frac{b_n}{a_n}</math> שווה לאינסוף? אפשר להגיד משהו על הטורים?
(לא מתרגל / מרצה) הנה ההסבר שלי:
::כן. התכנסות הטור <math>\sum_{n=1}^\infty b_n</math> גוררת התכנסות הטור <math>\sum_{n=1}^\infty a_n</math>. --[[משתמש:מני ש.|מני]] 20:41, 28 בנובמבר 2012 (IST)


== תרגיל 5 כמה שאלות בוגרים ==
ההגדרה לרציפות היא נקודתית. כלומר <math>f</math> רציפה בנקודה <math>x_0</math> אם <math>lim_{x\rightarrow x_0}f(x)=f(x_0)</math>, כלומר <math>\forall\varepsilon>0\exists\delta>0\forall x,0<|x-x_0|<\delta: |f(x)-f(x_0)|<\varepsilon</math>. כלומר בבחירת <math>\delta</math> יש גם תלות ב-<math>x_0</math>.


הי,
לעומת זאת, ההגדרה לרציפות במידה שווה היא כוללת. פונקציה <math>f</math> היא רציפה שווה בקטע <math>A</math> אם <math>\forall\varepsilon>0\exists\delta>0\forall x_1,x_2\in A, |x_1-x_2|<\delta:|f(x_1)-f(x_2)|<\varepsilon</math>. כלומר פה אין קודם בחירה של הנקודה, אלא ה-<math>\delta</math> מתאים לכל שתי נקודות.
1.שאלה 7-הם מתלכדים החל ממקום סופי או לאו דווקא?
 
2.אשמח לרמז ל 2ב
זו הכוונה בכך ש-<math>\delta</math> אינו תלוי ב-<math>x_0</math>. --[[משתמש:גיא|גיא]] 23:21, 6 בינואר 2013 (IST)
תודה
::1. במילה "מקום" אנו בעצם מצביעים על אינדקס טבעי וממילא זהו ערך  סופי בהכרח.
2. אפשר לנסות לכתוב אי שוויון בכיוון אחד לנסות לפשט אותו ואז  להסתמך על טענות או משפטים שראיתם בהרצאה. --[[משתמש:מני ש.|מני]] 13:07, 29 בנובמבר 2012 (IST)


== אריטמתיקה של סכומים ==


אם יש לי <math>\sum_{1}^{\infty}a_n=a</math> וגם <math>\sum_{1}^{\infty}b_n=b</math>
תודה רבה הבנתי :) כשאמרו שבחירת הדלתא תלוי ב x, לא הבנתי שהם מתכוונים ל xo.


a,b ממשיים
== שאלה טכנית ==


האם אפשר להגיד ש:
אם יש לי, נניח, דבר כזה:


<math>\sum_{1}^{\infty}(a_n+b_n)=a+b</math>
<math>lim_{x\rightarrow 0} (\frac{1}{x}+x)</math>
::כן. זה משפט. --[[משתמש:מני ש.|מני]] 13:07, 29 בנובמבר 2012 (IST)


== טורים ==
ואני רוצה לחשב גבולות חד-צדדיים. האם מותר לי, לפני חישוב הגבולות, לומר:


אם <math>\sum(a_n)</math> מתכנס ו<math>b_n</math> חסומה
<math>lim_{x\rightarrow 0} (\frac{1}{x}+x)=lim_{x\rightarrow 0} \frac{1}{x} + 0=lim_{x\rightarrow 0} \frac{1}{x}</math>
האם ניתן לומר ש <math> \sum(a_nb_n)</math> גם מתכנס?
:: (לא מרצה/מתרגל) לדעתי כן (בהנחה ש <math>a_n</math> חיובית), הוכחה: <math>b_n</math> חסומה ולכן קיים M כך ש <math>b_n</math> <M, ולכן: <math>a_nb_n</math> <M<math>a_n</math>.  <math>\sum(M*a_n)</math> מתכנס ולכן  <math> \sum(a_nb_n)</math> מתכנס.


== מותר להגיד דבר כזה? ==
כאילו לעשות מעבר גבול על "חלק" מהארגומנט, אותו החלק שאינו תלוי בצד הגבול (מימין או משמאל)?
::יש קצת בעיה לכתוב את זה כך כי גבול שווה לסכום הגבולות בהנחה שהגבולות בכלל קיימים בדוגמא שציינת הגבול <math>lim_{x\rightarrow 0} \frac{1}{x}</math> כלל לא קיים ומן הסתם גם הגבול שהתחלת איתו לא קיים. מצד שני לכתוב
<math>lim_{x\rightarrow 0^+} (\frac{1}{x}+x)=lim_{x\rightarrow 0^+} \frac{1}{x} + 0=lim_{x\rightarrow 0^+} \frac{1}{x}</math> נראה יותר מדוייק וכנ"ל בגבול החד צדדי השמאלי שכן הגבולות החד צדדיים האלו כן קיימים--[[משתמש:מני ש.|מני]] 15:04, 8 בינואר 2013 (IST)


שאם <math>\sum(a_n)</math> מתכנס ו <math>\sum(b_n)</math> מתבדר, אז
== בתרגיל 10 שאלה 1ב (מתמטיקאים) ==
<math>\sum(a_n)+\sum(b_n)</math> מתבדר?
::כן זה נכון. אפשר להניח בשלילה שזה מתכנס ואז להפעיל אריתמטיקה (חיסור) ולקבל ... --[[משתמש:מני ש.|מני]] 23:34, 1 בדצמבר 2012 (IST)


== תרגיל 6 שאלה 3 מתמטיקאים ==
צריך להוכיח רציפות של הפונקציות sin ו-cos?
::לא. --[[משתמש:מני ש.|מני]] 16:19, 9 בינואר 2013 (IST)


האם ניתן קודם למצוא את הגבול ובעזרת המידע שאני יודע עליו להוכיח את את הטענה?
== חומר לבוחן (תיכוניסטים) ==
::קצת קשה לי לראות איך מהידע על הגבול ניתן להסיק מונוטוניות של הסדרה. אבל אם יש לך רעיון/כיוון שעוזר לך אתה יכול לנסות אותו. --[[משתמש:מני ש.|מני]] 23:21, 2 בדצמבר 2012 (IST)


== תרגיל 7 תיכוניסטים ==
מה החומר לבוחן (הקבוצה של פרופ' אגרונובסקי)?


למתי צריך להגיש את תרגיל 7
== העלאת תרגיל 10 לתיכוניסיטים ==
שבוע הבא אין שיעורים
ויום ראשון לאחר מכן יש לנו בוחן בבוקר


ד"א לאחר הבוחן יש הרצאה ותרגול כרגיל(בשעות אחה"צ)?
ניתן בבקשה להעלאות את התרגיל של השבוע?
תודה


== תרגיל 6 ==
== הבחנים ==


לא בדיוק הבנתי מזה אומר ש An+Bn היא סידרה חסומה??.. כלומר חסומה גם מילעיל וגם מילרע?.. ומזה אומר לגבי An וBn ??.. לא בדיוק למדנו את זה... כי לפי הנתון הנוסף AN לא יכולה להיות חסומה- רק מלרע כי היא שואפת לאינסוף אז איך יכול להיות שהסכום חסום?.. תודה!
מה התאריכים של הבחנים, ומה החומר שהם יכסו? תודה
::ההגדרה של סדרה חסומה היא כפי שאמרת. לגבי השאלה האחרונה זו בדיוק השאלה שיש לשאול. אם הסכום חסום ומצד שני הסדרה
An שואפת לאינסוף מה ניתן יהיה להסיק ביחס לסדרה Bn ? נסו לחשוב איך יתכן שהסכום חסום. זה השלב הראשון בדרך לפתרון. -[[משתמש:מני ש.|מני]] 11:34, 5 בדצמבר 2012 (IST)


== תרגיל 6 (מתמטקאים בוגרים) ==
== שאלה כללית ==


שאלה 2, הכוונה שם ששלושת הסדרות מתכנסות במובן הצר?
מה ההבדל בין סופרמום של פונקציה למקסימום שלה??..ואם אפשר לרשום את ההגדרה הפורמלית של כל אחד מהמושגים, תודה!


תודה
http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%97%D7%A1%D7%9E%D7%99%D7%9D
::כן. --[[משתמש:מני ש.|מני]] 11:38, 5 בדצמבר 2012 (IST)


== שאלה על אריתמטיקה (מתמטיקאים בוגרים) ==
== הגדרת גבול של פונקציה ==


מותר לחלק משוואה או אי שיוויון בסדרה ששואפת לאפס בצורה הזו לדוגמא n שואף לאינסוף אז מותר לחלק בסדרה 1 חלקי n?
אם פונקציה שואפת לאינסוף, מה זה אומר??


== הגדרת גבול של פונקציה ==


אם פונקציה שואפת לאינסוף, מה זה אומר??
כלומר אם איקס שואף לאינסוף, והגבול הוא L, מה זה אומר??


תודה
::אם הסדרה  שונה מאפס לכל n  אז בלי קשר למה היא תשאף אין לך חלוקה באפס. לכן אם איבר הסדרה הוא חיובי אז אי השוויון שהתחלת ממנו ישמר אם הוא שלילי אז אי השוויון שהיה לך יתהפך פשוט לפי כללים רגילים של אי שוויון.--[[משתמש:מני ש.|מני]] 13:36, 5 בדצמבר 2012 (IST)


== תרגיל 6 שאלות 5 ו-6 (מתמטיקאים) ==
(לא מתרגל / מרצה) <math>\forall\varepsilon>0\exists\delta>0\forall x, x>\frac{1}{\delta}:|f(x)-L|<\varepsilon</math>, כי כזכור <math>U_\delta (+\infty)=(\frac{1}{\delta},+\infty)</math>. --[[משתמש:גיא|גיא]] 19:24, 12 בינואר 2013 (IST)


בשאלה 5- אפשר להניח ש-an מתכנסת במובן הצר? (ובאופן כללי שכאומרות מתכנסת- אפשר להניח שזה לגבול ממשי?)


בשאלה 6- מותר להוכיח ע"י מבחן השוואה?
קצת מבלבל אותי הסביבות הללו XD
::שאלה 5 - כן. באופן כללי.
שאלה 6- לא תרגלנו טורים עדיין והכוונה היתה לפתור דרך נושאים שגם תרגלנו. אבל אני מניח שמי שרוצה יכול לפתור  גם בכלים שכבר ראיתם בהרצאה כמו מבחני השוואה לטורים חיוביים. --[[משתמש:מני ש.|מני]] 13:28, 5 בדצמבר 2012 (IST)


== תרגיל 6 שאלה 3 ==


נתקעתי אחרי שניסיתי כמה כיוונים שונים. לא הצלחתי למצוא דרך לפי מה שלמדנו בכיתה.
(לא מתרגל / מרצה) אם <math>x\rightarrow\infty</math> והגבול הוא <math>L</math>, אז לכל <math> \varepsilon>0 </math> שנבחר (מרחק על ציר <math>y</math>), קיים מרחק על ציר <math>x</math>, שבשפה מתמטית קיים <math>\delta>0</math> כך שלכל <math>x>\frac{1}{\delta}</math>, ערכי הפונקציה יהיו באזור של <math>L</math>, כלומר יתקיים <math>|f(x)-L|<\varepsilon</math>. מקווה שיותר מובן :) --[[משתמש:גיא|גיא]] 18:24, 16 בינואר 2013 (IST)


האם מישהו יכול לתת לי הכוונה לגבי איך מוכיחים שהסדרה יורדת מונוטונית? ניסיתי כבר חיסור, מנה ואינדוקציה...
::הוכחתם בהרצאה לגבי סדרה אחרת דומה מאד שהיא מונוטונית(עולה דוקא). הייתי מציע להסתכל על ההוכחה ולנסות להשתמש בכלים שהיו שם. --[[משתמש:מני ש.|מני]] 21:05, 5 בדצמבר 2012 (IST)


יש הבדל בין <math>x>\frac{1}{\delta}</math> לבין <math>x>\delta</math>?


אני מבין שאתה מתכוון להתכנסות לe ניסיתי כבר להשתמש בזה - לא עבד....


== שאלות לגבי הבוחן ==
(לא מתרגל / מרצה) באופן עקרוני אם מדובר בכל <math>\delta</math>, אז אין הבדל גדול, אך בגלל הגדרת הסביבה אנו כותבים <math>x>\frac{1}{\delta}</math> --[[משתמש:גיא|גיא]] 23:13, 16 בינואר 2013 (IST)


א. הבוחן יכלול גם הוכחת משפטים?
ב. בבוחן יהיו בנוסף לטורים ולסדרות גם גבולות של פונקציות?


== למתי צריך להגיש את השעורים באינפי? (תיכוניסטים) ==
למה בהגדרת הסביבה צריך לרשום <math>x>\frac{1}{\delta}</math> ולא <math>x>\delta</math>?


באיזה תאריך צריך להגיש את השעורים הקרובים?
== האם יש מחר לימודים ??? (תיכוניסטים) דחוף ! ==


מתקיימים מחר הרצאות ותירגולים ??? כי יש בגרות באנגלית מחר והיא חופפת לשעות הלמידה. בבקשה תשובה בהקדם !


?????????????????


== פתרונות לתרגילים (תיכוניסטים) ==
(לא מתרגל) כן. כרגיל


בבקשה תעלו בהקדם את הפיתרונות לכל תרגילי הבית שנוכל לחזור עליהם לפני הבוחן. תודה רבה!
== מבחנים לדוגמא (תיכוניסטים) ==


== תרגיל 7 שאלה 5 (מתמטיקאים)==
מישהו יכול להוסיף לכאן קישור למבחנים לדוגמא באינפי 1 ובלינארית 2? תודה!


נראה לי שיש טעות בשאלה...
== רציפות במ"ש ==
הא'-ב' לא מסודרים שם בסדר הנכון...p:


::נכון... עכשיו אני רואה שחסר שם סעיף ב', וגם סעיפים יא', יב' ו-יג'... תודה רבה על תיקון הטעות! =) נפצה אתכם כפליים בתרגיל בית הבא! --[[משתמש:לואי פולב|לואי]] 12:44, 9 בדצמבר 2012 (IST)
יש לי שאלה כללית: יש משפט שאומר שאם פונקציה רציפה בקטע והגבולות בקצות הקטע קיימים וסופיים אז הפונקציה רציפה במ"ש עכשיו אם הפונקציה מוגדרת רק בסביבה ימנית של קצה הקטע האם המשפט יהיה נכון ע"י בדיקת הגבול הימני בקצות הקטע לדוגמא האם אפשר להוכיח ששורש x רציפה במ"ש ב(0,1) בעזרת זה שהיא רציפה בקטע הגבול ב-1 הוא 1 והגבול הימני באפס הוא אפס ? ואם לא איך אפשר להוכיח ששורש x רציפה במ"ש?
::הכוונה בגבולות בקצות הקטע הם לגבולות מתוך הקטע כלומר החד צדדיים כמו שרצית. אני לא בטוח אם למדתם השנה את המשפט הזה בהרצאה. בכל מקרה בקטע סופי ההוכחה די ברורה מרחיבים את הגדרת הפונקציה בקצוות לפי עררכי הגבול בקצוות ואז קל לראות שהפונקציה המורחבת גם כן רציפה. מכאן היא רציפה במ"ש בקטע הסגור לפי קנטור ולכן רבמ"ש גם בתת הקטע שממנו התחלנו אבל בתת הקטע היא מתלכדת עם הפונקציה המקורית. --[[משתמש:מני ש.|מני]] 23:47, 23 בינואר 2013 (IST)


יש!!!מעולה..תודה!:)
== רשימת משפטים ==


== תרגיל 7 שאלה 4 תיכוניסטים ==
האם רשימת המשפטים שהועלתה לאתר היא מהסיבה שתהיה הוכחת משפט/ים מתוכם? או כי פשוט החלטתם להעלות ללא קשר למבחן?


שלום, בשאלה 4 מאיזה n הטור מתחיל? זה יכול להשפיע על סכומו... --[[משתמש:גיא|גיא]] 12:38, 8 בדצמבר 2012 (IST)
*יש שאלת משפט במבחן, כך לפחות אצל ד"ר הורוביץ. אני מאמין שגם בקבוצה של פרופ' אגרונובסקי, לא מחלקים רשימת משפטים ספציפית סתם כך. חשוב לזכור שהרשימה בין שתי הקבוצות שונה.
:תבחר נקודה התחלתית כלשהי, זה אכן ישפיע על התשובה הסופית. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


== הבוחן (תיכוניסטים) ==


הבוחן יכלול גם מה שלמדנו על פונקציות?
(לא מתרגל / מרצה) רשימת המשפטים והוכחתם שעלו לאתר מיועדים לקבוצת התיכוניסטים (אני לא יודע מה עם הבוגרים) של פרופ' אגרנובסקי. במבחן אחד המשפטים מהרשימה או יותר עשויים להופיע כשאלה --[[משתמש:גיא|גיא]] 14:52, 25 בינואר 2013 (IST)


== לא הבנתי את שאלה 2 בתרגיל 7 תיכוניסטים ==
הבוגרים קיבלו את אותה רשימת משפטים.


כשאומרים שסדרת הזנבות של הטור מוגדרת, אז זה אומר שכל זנב (שהוא טור) מוגדר..
== שיעור חזרה לקבוצה של שמחה ==


אי אפשר פשוט לקחת את <math>d_1</math> וזה לדוגמא יפתור את סעיף c?
באיזה תאריך ושעה השיעור חזרה יתקיים?


:כן. --<font size='4'>[[משתמש:ארז שיינר|ארז שיינר]]</font>


(לא מתרגל / מרצה) של איזה מרצה ואיזו קבוצה? --[[משתמש:גיא|גיא]] 13:28, 26 בינואר 2013 (IST)


אה.. אוקי...


== תרגיל 7 שאלה 8 (תיכוניסטים) ==
לקבוצה של שמחה הורוביץ.


הנתון <math>\sum a_nb_n\leq C</math> אומר בעצם ש <math>\sum a_nb_n</math> מתכנס, אבל לא לאינסוף?
== מספר שאלות לגבי רשימת המשפטים של פרופ' אגרונובסקי (תיכוניסטים) ==


1) במבחן השורש של קושי להתכנסות טור, המבחן הוא על פי הגבול העליון, אך ההוכחה שפרופ' אגרונובסקי הראה לנו היא בהנחה שקיים גבול, האם ניתן להסתפק בהוכחה זו?


*(לא מתרגל) לאו דווקא, תסתכל\י על: <math>a_{n}=1, b_{n}=(-1)^{n}</math>
2) אם בחלק מההוכחות שפרופ' אגרונובסקי הראה לנו יש התעלמות ממקרי קצה, האם ניתן להתעלם מהם במבחן?


בתודה מראש, [[משתמש:Avichai|Avichai]] 20:21, 26 בינואר 2013 (IST)


כן אבל אז הסכום לא מוגדר בכלל..
(לא מרצה / מתרגל) שאלתי אותו במייל והעלתי עדכון להוכחות. הוא ביקש שנדע גם את ההוכחה להכללה של משפט קושי. --[[משתמש:Dvir1352|דביר חדד ]] 15:06, 29 בינואר 2013 (IST)


*(לא מתרגל) מה זאת אומרת טור לא מוגדר? אולי הוא לא מתכנס, אבל סדרת הסכומים החלקיים מוגדרת (והיא לא מתכנסת).


דביר- פרופ' אגרונובסקי עבר על ההוכחות שלך? - זה ההוכחות שהוא רוצה שנכתוב? (צריך גם את של רול ואת שתי הפשרויות למבחן קושי של טורים??)




אוקי. אז מה הנתון הזה אומר?
אני אשלח לו מייל עם ההוכחות בדיוק, ומחר גם אפגוש אותו. ככה שרק אז אוכל לענות ב100%. כרגע מדובר בדיוק בהוכחות שהוא נתן בכיתה, פלוס ההערות שהוא הוסיף בעקבות שאלות שנשלחו אליו במייל. --[[משתמש:Dvir1352|דביר חדד ]] 23:56, 30 בינואר 2013 (IST)


*(לא מתרגל) אם אני מבין נכון, זה פשוט אומר שהטור חסום.. --דביר חדד 15:07, 10 בדצמבר 2012 (IST)
'''הועלה עדכון לעמוד של הקורס'''
--[[משתמש:Dvir1352|דביר חדד ]] 21:30, 31 בינואר 2013 (IST)


== היינה-בורל ==


[[מדיה:Example.ogg]]


כן אבל זה בהנחה שהטור בכלל מתכנס לא?
למדנו את משפט היינה בורל ?


*(לא מתרגל) לאו דווקא, אתה יכול להסתכל על הטור<math>\sum _{ n=1 }^{ \infty  }{ { (-1) }^{ n } } </math> והוא חסום, על ידי 8078 לדוגמא, אבל לא מתכנס.
== מערכי תירגול במשפט ערך הביניים (תיכוניסטים) ==




אבל הרי סכום הטור הוא בעצם גבול הסכומים החלקיים <math>\sum_{n=1}^\infty a_n=\lim_{N\rightarrow\infty}S_N</math>, ובגלל שבמקרה הזה אין גבול לסכומים החלקיים, הטור לא מוגדר. אז איך אפשר להגיד שהטור חסום אם הוא לא מוגדר בכלל?
במערך התרגול של משפט ערך הביניים יש ארבעה תרגילים. אפשר לצרף אליהם פתרונות לבדיקה עצמית ?


*(לא מתרגל) אני לא מבין למה אתה מתכוון "הטור לא מוגדר". הסכום מוגדר, יש סכום כזה של <math>1-1+1-1...</math>, מה הבעיה איתו? אולי אתה מדבר על כך שהטור '''לא מתכנס''', כלומר סדרת הסכומים החלקיים לא מתכנסת, וזה נכון, אבל היא מוגדרת מצוין, כי הסדרה <math>(-1)^n</math> מוגדרת היטב (זו הרי פונקציה מN לR, ואין כל בעיה בהגדרה שלה). בכל מקרה, סדרת הסכומים פה חסומה, חסימות במובן של סדרות.
== שאלה על הקשר בין פונקציה לנגזרתה ==


== מבחן דיריכלה ==


אם מצאתי שהטור מורכב מan מונוטונית שואפת לאפס, כפול bn שסס"ח שלה לא חסומה- האם זה גורר שהטור מתבדר?
אם פונקציה רציפה אז האם בהכרח גם נגזרתה רציפה ?
אם כן אשמח להוכחה ואם לא אשמח להפרכה.


פונקציה רציפה לא גוררת גזירות.. למשל פונקציית הערך המוחלט


לא בהכרח. an = 1/n^2, bn = 1
תן לי לנסח את עצמי מחדש . אני שואל אם פונקציה רציפה וגזירה אז גם הנגזרת שלה רציפה.


== בוחן לתיכוניסטים ==
:גם לא, למשל הפונקציה הבאה: אם <math>x<1</math> אז <math>f(x)=1</math>, אחרת <math>f(x)=x</math>. הפונק' גזירה בכל הנקודות למעט 1, ושם גם הנגזרת לא רציפה.


הבוחן יכלול את מה שלמדנו בפרק של פונקציות?
כנראה לא הייתי ברור מספיק. נניח שיש פונקציה f גזירה בכל הממשיים ! (ולכן גם רציפה). האם גם נגזרתה רציפה ? בדוגמא שלך הפונקציה לא גזירה ב-1.
הבוחן יכלול הוכחת משפטים?


== בוחן תיכוניסטים ==


רציתי לדעת מה החומר לבוחן? והאם הוא יכלול הוכחת משפטים?
* טוב, הדיון הזה נהיה קצת הזוי... :) בואו נראה האם הבנתי את השאלה. יש פונקציות רציפות וגזירות כך שנגזרתן אינן רציפה. הדוגמה הסטנדרטית היא: <math>f(x)=x^2\sin{\frac{1}{x}}</math> עבור <math>x\neq 0</math>, ו- <math>f(0)=0</math>. למרות שהנגזרת באפס קיימת, פונקציית הנגזרת אינה רציפה שם. --[[משתמש:לואי פולב|לואי]] 18:03, 2 בפברואר 2013 (IST)


== שיעור חזרה לקבוצה של שמחה ==


(לא מתרגל / מרצה) הבוחן לא יכלול הוכחות משפטים. החומר - הכל עד טורים (כולל). --[[משתמש:גיא|גיא]] 15:14, 12 בדצמבר 2012 (IST)
מתי מתקיים שיעור החזרה לקבוצה של שמחה הורוביץ'?


תודה
*ההודעה נשלחה במייל ממלי:


== שאלה (מתמטיקאים) ==
שם הקורס : חשבון אינפיניטסימלי 1


באופן כללי,
שם המרצה : ד"ר הורוביץ שמחה
האם ניתן לעשות את "הטריק" של לחבר ולהחסיר אבל עם סדרות וגבולות?
ז"א האם גם כשמשאיפים את n לאינסוף אפשר להגיד ש- 1= 1+a_n-a_n?


תודה
שעור חזרה עם ד"ר הורוביץ יתקיים ב תאריך 5/2/13 בשעה  16-18 בכיתה 202/103


::השוויון שציינת בוודאי מתקיים לכל <math>n</math> .אם הכוונה שלך שהגבול של צד ימין כשn  שואף לאינסוף שווה לגבול של צד שמאל כשn שואף לאינסוף  ושניהם שווים לאחד אז התשובה חיובית. לא ניתן לומר בדוגמא שנתת כלום  על התכנסות של <math>a_n</math> למשל.  באופן כללי אפשר להפעיל חיבור וחיסור כשמפעילים גבולות בהנחה שהגבולות קיימים.  למשל גבול של סכום הוא סכום הגבולות  אבל רק אם יודעים שכל מחובר מתכנס ואז גם אפשר להשתמש ב"טריק" הכללי שציינת בצורה מועילה. חוץ מזה צריך לזכור שבאריתמטיקה של גבולות יש ביטויים לא מוגדרים כמו אינסוף פחות אינסוף וכו'. --[[משתמש:מני ש.|מני]] 19:22, 15 בדצמבר 2012 (IST)
== הבוחן השני (תיכוניסטים) ==


== אפשר להגיד דבר כזה? ==
אפשר הסבר לשאלה 3 סעיף ג', למה x = 0 היא נקודת אי רציפות ממין שני?


נניח שיש סדרות <math>a_n</math> ו <math>b_n</math> כך ש <math>\lim a_n = L</math> ו <math>\lim b_n = R</math>, וכמו כן <math>L \leq R</math>, אז אפשר להגיד שקיים <math>n_0</math> טבעי, כך שלכל      <math>n \geq n_0</math> מתקיים <math>a_n \leq b_n</math>?
== צריך ללמוד הוכחות של משפטים שאינם ברשימה? ==


בפרט, צריך לדעת הוכחות של משפטים שההוכחות מהרשימה מסתמכות עליהם?
למשל, ההוכחה של משפט לגרנז' מסתמכת על הלמה של רול, שבעצמה נשענת על משפט פרמה- האם כל ההוכחות הפנימיות דרושות?


תודה
::זאת שאלה מעולה. למרצים. :) --[[משתמש:לואי פולב|לואי]] 17:56, 3 בפברואר 2013 (IST)


*(לא מתרגל) לאו דווקא, נסתכל על הסדרות an=1+1/n, bn=1.


שתיהן שואפות לאחת, ואכן מתקיים 1<=1. כלומר הגבול של an קטן שווה מהגבול של bn.
'''תשובתו של פרופ' אגרנובסקי הייתה כדלקמן:
יש להציג את ההוכחות למשפטים כפי שנלמד בכתה. במשפט לגראנז' על ערך ממוצע יש לציין, במקום המתאים, שנעשה שימוש בלמה של רול, ולצטט אותה. אין חובה להוכיח אותה, אם כי זה בהחלט אפשרי.'''


אבל לכל n שתבחר תמיד יתקיים an>bn.
== רציפות במידה שווה של אקספוננט ולאן ==


::(לא מתרגל) אבל אם האי שוויון חזק אז כן
האם האקספוננט רציף במ"ש על כל הישר הממשי ואותה שאלה לגבי ln x בין 0 לאינסוף
אם אפשר לצרף הוכחה
תודה


::נמצא במערכי תרגול ובשיעורי הבית. --[[משתמש:לואי פולב|לואי]] 17:57, 3 בפברואר 2013 (IST)


אה אוקי תודה :-)
*(לא מתרגל) בנוגע לlnx אפשר לראות כי היא לא חסומה על (0,1),והוא תת קטע של הקטע המדובר, לכן היא לא רציפה שם במ"ש ולכן לא רציפה במ"ש גם בקטע המקורי.


== הבוחן לדוגמא ==
בנוגע לe^x אפשר לקחת שתי סדרות ולהפריך זאת, לדוגמא על ידי Xn=n+1/n וכן Yn=n. זה יוצא קצת ארוך ועם הרבה לופיטל, אבל בסוף מתקבל שהגבול הוא מינוס אינסוף. אפשר גם לקחת Xn=lnn+1/n וכן Yn=lnn ולקבל כי ההפרש של הפונ' שואף ל-1, זה מעט קצת יותר.


יש למישהו את התשובות לבוחן לדגומא שהעלו?
== איפה אפשר למצוא מבחנים של פרופסור אגרנובסקי? ==


== בוחן דמה ==
או בכלל?...


http://u.cs.biu.ac.il/~sheinee/


ודביר חדד העלה מבחנים ממקומות אחרים:
http://www.math-wiki.com/index.php?title=%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_-_%D7%9E%D7%91%D7%97%D7%A0%D7%99%D7%9D_%D7%9E%D7%90%D7%95%D7%A0%D7%99%D7%91%D7%A8%D7%A1%D7%99%D7%98%D7%90%D7%95%D7%AA_%D7%A9%D7%95%D7%A0%D7%95%D7%AA


אפשר להעלות פתרונות לבוחן דמה ? או שמישהו יגיד מה יצא לו ב-2 ו3 ...
בהצלחה לנו (:


== האם אפשר להסתמך על ההגדרה של ==


0^0=1?


:יש לך פתרון לראשון?
כי נוסחת טיילור, אם הבנתי נכון, מתבססת על ההגדרה הזאת. (וזה לא מובן מאליו)


*(לא מתרגל) את הראשון פתרנו בתרגול (לפחות בקבוצה שלנו). בכל מקרה יש אותו במערכי התרגול.
*(לא מתרגל) נוסחאת טיילור מתבססת על 3 דברים במקרה שבו k=0 מתקבל בסכום : 1=0^(x-x0), הנגזרת האפס של פו' בנקודה שווה לערך הפו' בנקודה, ו1=!0.


== איך מראים שלמשוואה tanx=x יש אינסוף פתרונות? ==


:אבל בתרגיל הזה הם ביקשו משהו אחר.
תודה..


*(לא מתרגל) אני מצרף פתרונות סופיים שיצאו לי, קח/י בחשבון שיש מצב שהם לא נכונים, לא מתחייב ב100% (אם כי אני דיי בטוח שזה נכון).
tg(pi/4+pi*k)=1
tg(-pi/4+pi*k)=-1
הפונקציה רציפה בקטע הנ"ל ולכן לפי ערך הביניים קיימות אינסוף נקודות שבהן f(x)=0


התשובות הסופיות בקישור הבא, כדי לא להרוס למי שלא רוצה לראות: [http://up361.siz.co.il/up3/4nh3iozggotd.jpg]
== בפתרון תרגיל 12 שאלה 9 סעיף ב ==


בנוגע לשאלה השנייה, אני מאמין שזה אותו דבר. פשוט צריך להוכיח שאם קיים הגבול של שורש n-י של an, הוא גם שווה לגבול השני.
למה:


<math>lim_{x\rightarrow \infty } \frac{3e^{3x}-5}{e^{3x}-5x}= lim_{x\rightarrow \infty } \frac{9e^{3x}}{3e^{3x}-5}</math>  ?


:כן אבל השאלה הראשונה זה הפרכה.. אפילו בתרגול אמרו לנו את זה.
לופיטל


*אוקיי, את/ה יכול/ה להראות אותה?
נכון! מהמם, תודה (:




: זה בדיוק מה שביקשתי בהתחלה :O
עוד שאלה: בסעיף ד הבנתי שהשתמשנו בלופיטל:


אפשר להראות שזה הפרכה עם סדרה קבועה של אפסים
<math>e^{lim_{x\rightarrow \infty}\frac{lnx}{x}}=e^{lim_{x\rightarrow \infty}\frac{\frac{1}{x}}{1}}</math>


אבל למה בלי נוסחת הגזירה של מנה?


: כן גם חשבתי על זה.. אבל יוצא שהסדרה בכלל לא מוגדרת (an+1/an) ככה שהיא מתכנסת באופן ריק.
::בלהופיטל גוזרים את המונה והמכנה בנפרד...




אתה יכול אז לקחת סדרה שמוגדרת כך שעבור n מתחלק ב-3 תחזיר n עבור n מתחלק ב-3 עם שארית 1 תחזיר 2n ועבור n מתחלק ב-3 עם שארית 2 תחזיר 3n אפשר לראות שכל תת סדרה שואפת ל-1 ולכן גבול הסדרה הוא אחד אבל אפשר לראות שסדרת היחסים בין כל שני איברים סמוכים לא מתכנסת
אוף, נכון...


*"כל תת סדרה מתכנסת ל-1"? כל תת סדרה מתכנסת במובן הרחב לאינסוף בדוגמא שלך. ואיפה בדיוק השורש הn-י?
== כמה שאלות לגבי המבחן (תיכוניסטים) ==




בשורש n-י כל תת סדרה מתכנסת ל-1...
מישהו יודע מתי המבחן יגמר ? (עם תוספת זמן ובלי תוספת זמן)


*אוקיי כנראה שאת/ה צודק/ת :(
מה יהיה מבנה המבחן והאם תהיה בחירה ?


בכל מקרה, אני דיי בטוח שאם an+1/an מתכנסת אז היא תתכנס לאותו L.
== אפשר בבקשה לפרסם פתרון למבחן של המתמטיקאים מועד א'? ==


שאלה 1 ב' http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%A4%D7%AA%D7%A8%D7%95%D7%9F_%D7%9E%D7%95%D7%A2%D7%93_%D7%90_%D7%9E%D7%93%D7%9E%D7
רוב תודות!


== שאלה כללית  ==
::אני חושב שהמתרגלים יצאו לחופש =) אפשר לכתוב פתרונות בעצמנו כמו שהתיכוניסטים עשו (ראיתי באתר שלהם בשנה שעברה) ואז אפשר לבקש מהמתרגלים שיעלו לכולם ואולי גם יבדקו אם זה נכון מה שעשינו.


האם ניתן להגיד שאם גבול של סדרה הוא אפס, אזי סס"ח שלה חסומה?
רעיון מעולה!אז תכתוב אתה ותעלה לאתר לכולם?


לא. גבול של אחד חלקי n הוא אפס אבל הסס"ח שלה לא חסומה...
== איך ללמוד למועד ב? ==


:: השאלה הזאת לא מנוסחת טוב. חייבים להקפיד על שימוש תקין במונחים מתמטיים! למשל, "אם גבול של סדרה הוא אפס, אזי סס"ח שלה..." סס"ח של מי? לסדרות אין סס"חים! :)  סדרת סכומים חלקיים זה משהו שיש לטור... אותה בעיה בתשובה.  
מישהו יכול להמליץ לי על דרך טובה להתכונן למועד ב? אני די תקוע...
::כעת, מה השאלה בעצם? נניח שיש לנו טור, כך שהאיבר הכללי שואף לאפס, אז האם סס"ח של הטור חסומה? התשובה היא לא (אותה דוגמא נגדית מעולה של התשובה מעל). --[[משתמש:לואי פולב|לואי]] 20:42, 15 בדצמבר 2012 (IST)


== מבחן ההשוואה ==
== בדיקת גזירות ==


אם טור An <= Bn <= Cn וCn ו An מתכנסים, אז Bn מתכנס?
איך בודקים אם פונקצייה גזירה פעמיים, או שלושה פעמים, וכו׳ (עד הרמה הn)??
ראיתי במשפט רק כש Bn סדרה שבין סדרה מתכנסת ל0.
::אם זו פונקציה אלמנטרית היא גזירה אינסוף פעמים בתחום הגדרתה.
כדי לבדוק גזירות פונקציה מפוצלת למשל פשוט צריך לבדוק לפי ההגדרה. בהנחה שבכל תחום הפונקציה היא פונקציה גזירה (למשל אלמנטרית שמוגדרת בכל הממשיים) אז הנקודות היחידות שצריך לבדוק לפי הגדרה הן הנקודות שבין התחומים המפוצלים. אם הפונקציה היתה גזירה אז אפשר לרשום את פונקציית הנגזרת. כלומר את הגדרה של פונקציית הנגזרת בכל נקודה. אחרי שרושמים אותה שוב אפשר לבחון אם פונקציה זו שהתקבלה, זאת אומרת פונקציית הנגזרת הראשונה, גזירה בכל נקודה או לא בדיוק כמו שעשינו בשלב הקודם.  --[[משתמש:מני ש.|מני]] 00:34, 22 בפברואר 2013 (IST)


::האם הכוונה בשאלה לטורים חיוביים?...--[[משתמש:לואי פולב|לואי]] 20:43, 15 בדצמבר 2012 (IST)
== סמסטר ב' ==


לאו דווקא, חיובים ברור כי אז An >= 0 וזה ככה במשפט
מתי מתחיל סמסטר ב'? (לתיכוניסטים)
:מה זה קשור לתיכוניסטים? מתחיל לכולם ב-26/2


::אם כך, הנה המשפט:
== ללומדים עם ד"ר מיכאל בשימושי המחשב ==
::יהיו <math>\sum a_n , \sum b_n , \sum c_n</math> טורים כך שהחל ממקום מסויים מתקיים <math>a_n \leq b_n \leq c_n</math>. אזי אם הטורים <math>\sum a_n , \sum c_n</math> מתכנסים, גם <math> \sum b_n </math> מתכנס.


תודה רבה!:)
באיזה יום ושעה יש את ההרצאה?


== מבחן המנה ==
== בחירת c בנוסחת טיילור עם שארית לגרנג' ==


איך בוחרים את c? אני יודע שהוא בין x לx0 אבל זה אומר שניתן לבחור כל ערך ביניהם? זה לא ישנה את הקירוב?


אם אני מקבל ש <math>\lim \frac{a_{n+1}}{a_n}</math> שווה לאינסוף אז הטור <math>\sum a_n</math> מתבדר ? ואותו דבר, אם מקבלים מינוס אינסוף אז הטור המקורי מתכנס ?
*(לא מתרגל) לא בוחרים את c. משפט טיילור מבטיח שהוא קיים, זה הכל - אי אפשר לדעת עליו כלום. המידע היחיד עליו שהוא נמצא בין X לX0. ברוב התרגילים זה עוזר להעריך את השארית, שכן אפשר לאמר שהנגזרת ה-n+1 בטוח קטנה מהצבת ערך הקצה(כלומר הנגזרת הn+1 בX או בX0, תלוי בפונקציה).


*(לא מתרגל) אני כמעט בטוח שאם הוא פלוס אינסוף אז הטור מתבדר, כי זה גדול מ-1 ולא הגבלנו אותו להיות ממשי. בכל מקרה, מציע שתחכה לתשובה יותר חד משמעית.
== איך מחשבים את הגבול הבא ==


בנוגע למינוס אינסוף - זה לא יכול לקרות, כי הטור חיובי, ולכן הגבול בהכרח גדול שווה אפס, לא יכול להיות שלילי (כי אפס חסם מלרע של כל סדרה אי שלילית).
sqrt(x)sin(1/x)
אשמח לעזרה..תודה מראש...x שואף לאינסוף..שכחתי לציין..


== מתי הלימודים מחר ????? (תיכוניסטים) ==
(לא מתרגל / מרצה) x שואף למה? --[[משתמש:גיא|גיא (לא מתרגל / מרצה)]] 19:24, 11 במאי 2013 (IDT)


(לא מתרגל / מרצה) פתרון: <BR>
<math>\lim_{x\rightarrow\infty}\sqrt{x}\cdot\sin{\frac{1}{x}}=\left \{ y=\frac{1}{x}\ ; \ y\rightarrow 0 \right \}=\lim_{y\rightarrow 0}\frac{\sin y}{\sqrt{y}}=\left \{ L'hopital \right \}=\lim_{y\rightarrow 0}\frac{\cos{y}}{\frac{1}{2\sqrt{y}}}=\lim_{y\rightarrow 0}2\sqrt y\cos y=0</math> --[[משתמש:גיא|גיא (לא מתרגל / מרצה)]] 20:18, 11 במאי 2013 (IDT)


מישהו יודע מתי מתחילים הלימודים מחר ??? אני יודע שהבוחן ב-12... אבל יש לימודים לפני ? ומתי הלימודים נגמרים ?
== שאלה חשובה לגבי הגדרת גבול של פונקציות ==


הבוחן ב12 ואז לימודים כרגיל משלוש וחצי עד 8 וחצי (:
מדוע הטיעון האינטואיטיבי הבא לא שקול בדיוק למה שאומרת ההגדרה של גבול פונקציות. כלומר אפשר לקבל דוגמה שבה ההגדרה הפורמלית של גבול פונקציות מתקיימת בעוד שהטיעון האינטואיטיבי לא מתקיים?


הטיעון הוא שככל ש-X קרוב יותר ל-Xo, כך ערכי הפונקציה קרובים יותר לגבול L.


ואין לימודים לפני הבוחן?
ההגדרה הפורמלית אומרת שלכל סביבת אפסילון של L קיימת סביבת דלתא של Xo כך שלכל x ששייך לסביבת דלתא של Xo מתקיים ש
f(x) שייך לסביבת אפסילון של L.


אין
אשמח לראות דוגמה שבה ההגדרה הפורמלית מתקיימת, בעוד שהטיעון האינטואיטיבי לא מתקיים.


== הלימודים ביום ראשון ==
אם אין דוגמה כזו, אזי הטיעון האינטואיטיבי משקף באופן מושלם את ההגדרה הפורמלית, רק שהוא לא כתוב בכתיב מתמטי פורמלי?


איך מתנהלים הלימודים ביום ראשון? מתי צריך להגיע לאוניברסיטה?
תודה מראש.

גרסה אחרונה מ־07:57, 13 במאי 2013

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.


ארכיון

שאלות

הערה לגבי הצגת שאלות

כשמתייחסים לשאלה משיעורי הבית אז בשורת הכותרת פרט למספר התרגיל ולמספר השאלה רצוי מאוד לומר על איזה קבוצה מדובר:מתמטיקאים,תיכוניסטים או מדמ"ח. אחרת, זה יכול לבלבל הן את הסטודנטים והן את המתרגלים. --מני 18:27, 31 באוקטובר 2012 (IST)

(מתמטיקאים) תרגיל 7 שאלה 5

כדי להפריך התכנסות של טור מראים שהאיבר הכללי לא שואף לאפס. השאלה שלי האם אפשר להפריד באיבר הכללי ולהראות פעם אחת על האיבר הכללי הזוגי (כאשר n זוגי) שהוא לא מתכנס לאפס ופעם שניה על האיבר הכללי האי זוגי שהוא לא מתכנס לאפס. האם די בכך כדי לטעון שהאיבר הכללי לא מתכנס לאפס?


היי, מקווה שאני לא טועה ומטעה, אבל לדעתי מספיק להוכיח על אחת מתתי הסדרות (זוגיים או אי זוגיים) שאינה שואפת לאפס, בכדי להוכיח שכל הסדרה שאינה שואפת לאפס. הרי מתקיים: אם סדרה an שואפת ל-l אזי כל תת-סדרה ank שואפת ל-l. וזה בדיוק כמו: אם יש תת-סדרה ank שלא שואפת ל-l, אזי הסדרה an אינה שואפת ל-l.

אגב, יש עוד דרכים להפריך התכנסות של טור (להוכיח שסדרת הסכומים החלקיים לא מתכנסת לגבול סופי או להשתמש באחד מהמבחנים לטורים חיוביים- של קושי וחבריו). בהצלחה.

אפשר בבקשה לפרסם את תרגיל 8 למתמטיקאים?

תודה!

תרגיל מס' 8 שאלה 1

לפי לייבניץ, אם an היא סדרה מונוטונית יורדת של מס' חיובים השואפת ל-0, אזי הטור מתכנס, האם נכון גם לגבי תתי-סדרות, זוגיים ואי-זוגיים? האם ניתן להראות מונוטיות יורדת עבור שני איברים זוגיים ולאחר מכן, עבור שני איברים א"ז? תודה.


(לא מתרגל / מרצה) זה אכן אפשרי, אך זה לא אומר כלום על מונוטוניות הסדרה כולה, שכן יכול להיות שגם הזוגיים וגם האי זוגיים מונוטוניים עולים, אבל לכל [math]\displaystyle{ n\in\mathbb{N} }[/math] מתקיים [math]\displaystyle{ a_{2n}\gt a_{2n+1} }[/math], ואז אין מונוטוניות של הסדרה כולה --גיא 17:40, 23 בדצמבר 2012 (IST)

תרגיל 8 שאלה 5

חסר במקרה נתון של מונוטוניות??.. כי לא ברור איך לפתור.. או שצריך לחלק למיקרים אם Bn מונוטונית ואם לא..


(לא מתרגל / מרצה) לא חסר שום נתון. באיזה כיוון את/ה מתקשה להוכיח? --גיא 06:47, 26 בדצמבר 2012 (IST)

בשני הכיוונים למען האמת, נניח בכיוון הישר הטור An מתכנס בהחלט אז מה זה נותן לי??.. שהסידרה שואפת לאפס אבל לא נתון מונוטונית אז אי אפשר לפי דריכלה כי גם לא נתור שהטור Bn חסום, אבל גם אי אפשר abel כי מי אמר שBn מונוטונית יכולה להיות חסומה ולא מונוטונית... וגם לפי לייבניץ אני לא רואה כיוון כי לא נתון ש An מונוטונית בכלל.. בקיצור איך מתקדמים??..

בכיוון שציינת שווה לנסות להוכיח יותר, עד כמה שזה נשמע מוזר, שהטור [math]\displaystyle{ \sum_{n=1}^\infty a_nb_n }[/math] מתכנס אפילו בהחלט לכל סדרה חסומה. אפשר בהקשר זה לחשוב על מבחני התכנסות נוספים. --מני 10:45, 26 בדצמבר 2012 (IST)

תרגיל 8

אם נתונה סדרה חסומה אזי בהכרח הטור של הסדרה חסום???.. ולהיפך?.. אם טור חסום אזי הסדרה חסומה??..


(לא מתרגל / מרצה) בוודאי שלא. לדוגמה ניקח את הטור ההרמוני [math]\displaystyle{ \sum _{n=1}^\infty \frac{1}{n} }[/math] - הסדרה [math]\displaystyle{ \frac{1}{n} }[/math] חסומה ע"י 1, אבל טורה מתבדר ולכן אינו חסום. לגבי הכיוון השני, אני חושב שגם לו ניתן למצוא הפרכה אבל אני לא בטוח סופית --גיא 06:45, 26 בדצמבר 2012 (IST)

הכיוון השני כן נכון. כי אם קיים [math]\displaystyle{ M\gt 0 }[/math] כך ש[math]\displaystyle{ \forall n \in \mathbb{N} \ M\geq |S_n| }[/math]

אז[math]\displaystyle{ \forall n \in \mathbb{N} \ |a_{n+1}|=|S_{n+1}-S_n|\leq |S_{n+1}|+|S_n|\leq 2M }[/math]. --מני 10:56, 26 בדצמבר 2012 (IST)

זהויות טריגונומטריות

תוכלו בבקשה להעלות קובץ עם הזהויות הטריגונומטריות החיוניות עבורנו? יש בעמוד הראשי קישור לויקיפדיה, אבל יש שם המון זהויות...

תודה

אני לא יודע בשלב זה לספק רשימת זהויות חיוניות. אני מניח שכל הזהויות שניתקלים בהן בהרצאה, תרגול/ש"ב הן הזהויות ההכרחיות. דברים שכן חשובים ואני יכול להצביע עליהם אלו הזהויות של קוסינוס וסינוס זווית כפולה וגם מעבר ממכפלה לסכום (יש טבלה כזו בקישור שציינת). --מני 19:51, 26 בדצמבר 2012 (IST)

שלילת התכנסות טור

האם על סמך התנאי an+1/an>1 ניתן להסיק ש lim an שונה מ-0 ? ובכך לקבוע ישירות התבדרות הטור.

  • (לא מתרגל) כן, כי אם כך (החל ממקום מסוים) איברי הסדרה עולים ממש, וכן חיוביים ולכן לא שואפים ל-0 בטוח. לכן לפי הטענה:

אם הטור מתכנס אז הסדרה שואפת לאפס.

אפשר להסיק שהטור מתבדר.

נכון. תובנה יפה. בהמשך לכך שימו לב שאם התנאי [math]\displaystyle{ \frac{a_{n+1}}{a_n}\gt 1 }[/math] מתקיים נניח החל מ[math]\displaystyle{ n_0 }[/math] אז אם

[math]\displaystyle{ a_{n_0} }[/math] שלילי אז התנאי דווקא יגרום לכך שהסדרה מונוטונית יורדת מאותו מקום,וגם אז הגבול לא יכול להיות אפס. כי אם תהיה התכנסות הגבול יהיה קטן או שווה ל[math]\displaystyle{ a_{n_0} }[/math] שהוא שלילי. --מני 20:02, 26 בדצמבר 2012 (IST)

תרגיל 6 שאלת בונוס (מתמטיקאים)

נתון בשאלה שמתקיים: [math]\displaystyle{ \lim_{n\to \infty} (a_{n+1}-a_{n})=0 }[/math] כלומר, לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ n_{0} }[/math] שהחל ממנו [math]\displaystyle{ \left |a_{n+1}-a_{n} \right |\lt \varepsilon }[/math]

ניסיתי להשתמש בקושי ולטעון: [math]\displaystyle{ \left | a_{n+p}-a_{n} \right |=\left | a_{n+p}-a_{n+p-1}+a_{n+p-1}-a_{n+p-2}+...+a_{n+1}-a_{n} \right |\leq \left | a_{n+p}-a_{n+p-1} \right |+\left | {n+p-1}-a_{n+p-2} \right |+...+\left | a_{n+1}-a_{n} \right | }[/math]

ולכל [math]\displaystyle{ n\geq n_{0} }[/math] מתקיים:

[math]\displaystyle{ \left | a_{n+p}-a_{n} \right |\lt \varepsilon +\varepsilon +...+\varepsilon =p\cdot \varepsilon }[/math]


נבחר [math]\displaystyle{ \varepsilon=\frac{\varepsilon _{0}}{p} \Rightarrow \varepsilon \cdot p=\varepsilon _{0} }[/math]

ונקבל : לכל [math]\displaystyle{ \varepsilon _{0} }[/math] (בהתאם לבחירת [math]\displaystyle{ \varepsilon }[/math] כרצוננו):


[math]\displaystyle{ \left | a_{n+p}-a_{n}\right |\lt \varepsilon _{0} }[/math]


ולכן, לפי קושי, הסדרה מתכנסת לגבול סופי.

האם זה נכון?

לא. יש בעיה עם הכמתים (קיים,לכל). בהגדרה לפי קושי, אם אשתמש בסימונים שלך צריך להוכיח שלכל [math]\displaystyle{ \epsilon_0 }[/math] קיים [math]\displaystyle{ n_0 }[/math] כך שלכל [math]\displaystyle{ n\geq n_0 }[/math] ולכל [math]\displaystyle{ p }[/math] טבעי[math]\displaystyle{ \left | a_{n+p}-a_{n}\right |\lt \varepsilon _{0} }[/math].

אני אציג מה שלא עובד בהוכחה שציינת. בגדול אי אפשר יהיה לקבוע מהו [math]\displaystyle{ n_0 }[/math]. למה?

נציב לפי ההצעה שלך [math]\displaystyle{ p }[/math] טבעי מסוים ועבור [math]\displaystyle{ \varepsilon _0 }[/math] מסוים, [math]\displaystyle{ \epsilon=\frac{\varepsilon_0}{p} }[/math] ונשתמש בגבול הנתון ונסיק שקיים [math]\displaystyle{ n_0 }[/math] שתלוי ב [math]\displaystyle{ \varepsilon }[/math] ולכן תלוי ב[math]\displaystyle{ p }[/math] כך שלכל [math]\displaystyle{ n\geq n_{0} }[/math] ועבור אותו [math]\displaystyle{ p }[/math] ספציפי [math]\displaystyle{ \left | a_{n+p}-a_{n}\right |\lt \varepsilon _{0} }[/math]. אבל כדי להוכיח קריטריון קושי צריך שהנ"ל יתקיים לכל [math]\displaystyle{ p }[/math] ולא ל [math]\displaystyle{ p }[/math] מסויים. אם היינו משנים את [math]\displaystyle{ p }[/math] גם [math]\displaystyle{ n_0 }[/math] היה יכול להשתנות (כי הוא תלוי ב[math]\displaystyle{ \varepsilon }[/math] שתלוי ב[math]\displaystyle{ p }[/math]).


אגב, אי אפשר להוכיח שקריטריון קושי מתקיים ושהסדרה מתכנסת שכן קיימות דוגמאות נגדיות לסדרות שלא יתכנסו אך עדיין יקימו את התנאי בשאלה. --מני 11:50, 28 בדצמבר 2012 (IST)


נכון. תודה (:

מועד הבוחן

מתי יתקיים הבוחן השני לתיכוניסטים?


(לא מתרגל / מרצה) התאריך אמור להתפרסם בקרוב :) --גיא 21:58, 1 בינואר 2013 (IST)

תיכוניסטים תרגיל 9 שאלה 3

האם L ממשי או שייך לקו הממשי המורחב(כלומר כולל פלוס ומינוס אינסוף)?

ממשי --ארז שיינר

תרגיל 9 שאלה 1

כאשר רוצים לדרוש ערך מוחלט גדול מחיובי כלשהו (חסם לפי קושי)..אפשר לבחור את דלתא עצמה??.. כי ידוע שהיא חיובית, תודה!

אם הבנתי נכון את השאלה אז התשובה היא לא. אנחנו לא יודעים שדלתא חיובית. אנחנו רוצים להוכיח שקיימת דלתא חיובית כך ש...

חוץ מזה אנחנו לוקחים איקס לפי דלתא למשל [math]\displaystyle{ \delta\gt |x-1|\gt 0 }[/math] כשבודקים גבול פונקציה בנקודה 1. בעצם כתוב כאן קיימת דלתא כך שלכל איקס המקיים [math]\displaystyle{ \delta\gt |x-1|\gt 0 }[/math]. לכן האיקסים אמורים להיות תלויים בדלתא ולא ההיפך... אי אפשר להגיד פתאום ש [math]\displaystyle{ |x+5|\gt \delta }[/math]. הרעיון הוא להוסיף אילוץ על דלתא שלא תלוי באיקס למשל שדלתא קטנה משליש ואז דווקא לקבל מידע על הטווח של האיקסים לפי [math]\displaystyle{ \delta\gt |x-1|\gt 0 }[/math] בדוגמא שלי --מני 20:28, 2 בינואר 2013 (IST)

תיכוניסטים תרגיל 9 שאלה 2b

ניתן להניח שאם [math]\displaystyle{ \lim_{x \rightarrow - \infty }f(x)=- \infty }[/math] וגם [math]\displaystyle{ \lim_{x \rightarrow - \infty }g(x)=- \infty }[/math] אז [math]\displaystyle{ \lim_{x \rightarrow - \infty }f(x)g(x)= \infty }[/math] ?


(לא מתרגל / מרצה) כן, לפי אריתמטיקה של גבולות --גיא 20:07, 4 בינואר 2013 (IST)

שאלה כללית

איך אני מחשב גבולות חד צדדיים של פונקציות?

  • (לא מתרגל) באופן כללי יש הרבה דרכים, ומשפטי עזר לנושא. לדוגמא, אפשר לחשב על ידי אריתמטיקה, או על ידי משפט הסנדוויץ'. בנוסף אפשר לדעת על קיומו של גבול חד צדדי לפי המשפטון הבא:

אם f פונקציה חסומה ומונוטונית בקטע סגור [a,b] אזי קיימים הגבול מימין של a והגבול משמאל של b. דבר נחמד נוסף הוא שבמקרה בו הפונקציה עולה לדוגמא, הגבול השמאלי של b הוא הsup של כל ה(f(x בקטע, ובנוגע לגבול הימני בa הוא הinf בהתאמה. ביורדת בדומה. כלומר, אפשר לפתור את הבעיה עם חסמים במידה ומתרחש מקרה כמו המתואר לעיל.

דרך נוספת היא ממש לפי ההגדרה - לפי קושי/היינה, אבל לרוב זה לא נחמד ולא שימושי כל כך.

רציפות במידה שווה

אפשר הסבר להבדל בין רציפות לבין רציפות במידה שווה מבחינת הגדרה? כי אמרו שהדלתא יכול להיות תלוי ב x, בעוד שבמידה שווה זה לא כך.

לא הבנתי כל-כך למה זה נכון..


(לא מתרגל / מרצה) הנה ההסבר שלי:

ההגדרה לרציפות היא נקודתית. כלומר [math]\displaystyle{ f }[/math] רציפה בנקודה [math]\displaystyle{ x_0 }[/math] אם [math]\displaystyle{ lim_{x\rightarrow x_0}f(x)=f(x_0) }[/math], כלומר [math]\displaystyle{ \forall\varepsilon\gt 0\exists\delta\gt 0\forall x,0\lt |x-x_0|\lt \delta: |f(x)-f(x_0)|\lt \varepsilon }[/math]. כלומר בבחירת [math]\displaystyle{ \delta }[/math] יש גם תלות ב-[math]\displaystyle{ x_0 }[/math].

לעומת זאת, ההגדרה לרציפות במידה שווה היא כוללת. פונקציה [math]\displaystyle{ f }[/math] היא רציפה שווה בקטע [math]\displaystyle{ A }[/math] אם [math]\displaystyle{ \forall\varepsilon\gt 0\exists\delta\gt 0\forall x_1,x_2\in A, |x_1-x_2|\lt \delta:|f(x_1)-f(x_2)|\lt \varepsilon }[/math]. כלומר פה אין קודם בחירה של הנקודה, אלא ה-[math]\displaystyle{ \delta }[/math] מתאים לכל שתי נקודות.

זו הכוונה בכך ש-[math]\displaystyle{ \delta }[/math] אינו תלוי ב-[math]\displaystyle{ x_0 }[/math]. --גיא 23:21, 6 בינואר 2013 (IST)


תודה רבה הבנתי :) כשאמרו שבחירת הדלתא תלוי ב x, לא הבנתי שהם מתכוונים ל xo.

שאלה טכנית

אם יש לי, נניח, דבר כזה:

[math]\displaystyle{ lim_{x\rightarrow 0} (\frac{1}{x}+x) }[/math]

ואני רוצה לחשב גבולות חד-צדדיים. האם מותר לי, לפני חישוב הגבולות, לומר:

[math]\displaystyle{ lim_{x\rightarrow 0} (\frac{1}{x}+x)=lim_{x\rightarrow 0} \frac{1}{x} + 0=lim_{x\rightarrow 0} \frac{1}{x} }[/math]

כאילו לעשות מעבר גבול על "חלק" מהארגומנט, אותו החלק שאינו תלוי בצד הגבול (מימין או משמאל)?

יש קצת בעיה לכתוב את זה כך כי גבול שווה לסכום הגבולות בהנחה שהגבולות בכלל קיימים בדוגמא שציינת הגבול [math]\displaystyle{ lim_{x\rightarrow 0} \frac{1}{x} }[/math] כלל לא קיים ומן הסתם גם הגבול שהתחלת איתו לא קיים. מצד שני לכתוב

[math]\displaystyle{ lim_{x\rightarrow 0^+} (\frac{1}{x}+x)=lim_{x\rightarrow 0^+} \frac{1}{x} + 0=lim_{x\rightarrow 0^+} \frac{1}{x} }[/math] נראה יותר מדוייק וכנ"ל בגבול החד צדדי השמאלי שכן הגבולות החד צדדיים האלו כן קיימים--מני 15:04, 8 בינואר 2013 (IST)

בתרגיל 10 שאלה 1ב (מתמטיקאים)

צריך להוכיח רציפות של הפונקציות sin ו-cos?

לא. --מני 16:19, 9 בינואר 2013 (IST)

חומר לבוחן (תיכוניסטים)

מה החומר לבוחן (הקבוצה של פרופ' אגרונובסקי)?

העלאת תרגיל 10 לתיכוניסיטים

ניתן בבקשה להעלאות את התרגיל של השבוע?

הבחנים

מה התאריכים של הבחנים, ומה החומר שהם יכסו? תודה

שאלה כללית

מה ההבדל בין סופרמום של פונקציה למקסימום שלה??..ואם אפשר לרשום את ההגדרה הפורמלית של כל אחד מהמושגים, תודה!

http://www.math-wiki.com/index.php?title=88-132_%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90%27_%D7%AA%D7%A9%D7%A2%D7%91/%D7%9E%D7%A2%D7%A8%D7%9A_%D7%AA%D7%A8%D7%92%D7%95%D7%9C/%D7%97%D7%A1%D7%9E%D7%99%D7%9D

הגדרת גבול של פונקציה

אם פונקציה שואפת לאינסוף, מה זה אומר??

הגדרת גבול של פונקציה

אם פונקציה שואפת לאינסוף, מה זה אומר??

כלומר אם איקס שואף לאינסוף, והגבול הוא L, מה זה אומר??


(לא מתרגל / מרצה) [math]\displaystyle{ \forall\varepsilon\gt 0\exists\delta\gt 0\forall x, x\gt \frac{1}{\delta}:|f(x)-L|\lt \varepsilon }[/math], כי כזכור [math]\displaystyle{ U_\delta (+\infty)=(\frac{1}{\delta},+\infty) }[/math]. --גיא 19:24, 12 בינואר 2013 (IST)


קצת מבלבל אותי הסביבות הללו XD


(לא מתרגל / מרצה) אם [math]\displaystyle{ x\rightarrow\infty }[/math] והגבול הוא [math]\displaystyle{ L }[/math], אז לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] שנבחר (מרחק על ציר [math]\displaystyle{ y }[/math]), קיים מרחק על ציר [math]\displaystyle{ x }[/math], שבשפה מתמטית קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שלכל [math]\displaystyle{ x\gt \frac{1}{\delta} }[/math], ערכי הפונקציה יהיו באזור של [math]\displaystyle{ L }[/math], כלומר יתקיים [math]\displaystyle{ |f(x)-L|\lt \varepsilon }[/math]. מקווה שיותר מובן :) --גיא 18:24, 16 בינואר 2013 (IST)


יש הבדל בין [math]\displaystyle{ x\gt \frac{1}{\delta} }[/math] לבין [math]\displaystyle{ x\gt \delta }[/math]?


(לא מתרגל / מרצה) באופן עקרוני אם מדובר בכל [math]\displaystyle{ \delta }[/math], אז אין הבדל גדול, אך בגלל הגדרת הסביבה אנו כותבים [math]\displaystyle{ x\gt \frac{1}{\delta} }[/math] --גיא 23:13, 16 בינואר 2013 (IST)


למה בהגדרת הסביבה צריך לרשום [math]\displaystyle{ x\gt \frac{1}{\delta} }[/math] ולא [math]\displaystyle{ x\gt \delta }[/math]?

האם יש מחר לימודים ??? (תיכוניסטים) דחוף !

מתקיימים מחר הרצאות ותירגולים ??? כי יש בגרות באנגלית מחר והיא חופפת לשעות הלמידה. בבקשה תשובה בהקדם !


(לא מתרגל) כן. כרגיל

מבחנים לדוגמא (תיכוניסטים)

מישהו יכול להוסיף לכאן קישור למבחנים לדוגמא באינפי 1 ובלינארית 2? תודה!

רציפות במ"ש

יש לי שאלה כללית: יש משפט שאומר שאם פונקציה רציפה בקטע והגבולות בקצות הקטע קיימים וסופיים אז הפונקציה רציפה במ"ש עכשיו אם הפונקציה מוגדרת רק בסביבה ימנית של קצה הקטע האם המשפט יהיה נכון ע"י בדיקת הגבול הימני בקצות הקטע לדוגמא האם אפשר להוכיח ששורש x רציפה במ"ש ב(0,1) בעזרת זה שהיא רציפה בקטע הגבול ב-1 הוא 1 והגבול הימני באפס הוא אפס ? ואם לא איך אפשר להוכיח ששורש x רציפה במ"ש?

הכוונה בגבולות בקצות הקטע הם לגבולות מתוך הקטע כלומר החד צדדיים כמו שרצית. אני לא בטוח אם למדתם השנה את המשפט הזה בהרצאה. בכל מקרה בקטע סופי ההוכחה די ברורה מרחיבים את הגדרת הפונקציה בקצוות לפי עררכי הגבול בקצוות ואז קל לראות שהפונקציה המורחבת גם כן רציפה. מכאן היא רציפה במ"ש בקטע הסגור לפי קנטור ולכן רבמ"ש גם בתת הקטע שממנו התחלנו אבל בתת הקטע היא מתלכדת עם הפונקציה המקורית. --מני 23:47, 23 בינואר 2013 (IST)

רשימת משפטים

האם רשימת המשפטים שהועלתה לאתר היא מהסיבה שתהיה הוכחת משפט/ים מתוכם? או כי פשוט החלטתם להעלות ללא קשר למבחן?

  • יש שאלת משפט במבחן, כך לפחות אצל ד"ר הורוביץ. אני מאמין שגם בקבוצה של פרופ' אגרונובסקי, לא מחלקים רשימת משפטים ספציפית סתם כך. חשוב לזכור שהרשימה בין שתי הקבוצות שונה.


(לא מתרגל / מרצה) רשימת המשפטים והוכחתם שעלו לאתר מיועדים לקבוצת התיכוניסטים (אני לא יודע מה עם הבוגרים) של פרופ' אגרנובסקי. במבחן אחד המשפטים מהרשימה או יותר עשויים להופיע כשאלה --גיא 14:52, 25 בינואר 2013 (IST)

הבוגרים קיבלו את אותה רשימת משפטים.

שיעור חזרה לקבוצה של שמחה

באיזה תאריך ושעה השיעור חזרה יתקיים?


(לא מתרגל / מרצה) של איזה מרצה ואיזו קבוצה? --גיא 13:28, 26 בינואר 2013 (IST)


לקבוצה של שמחה הורוביץ.

מספר שאלות לגבי רשימת המשפטים של פרופ' אגרונובסקי (תיכוניסטים)

1) במבחן השורש של קושי להתכנסות טור, המבחן הוא על פי הגבול העליון, אך ההוכחה שפרופ' אגרונובסקי הראה לנו היא בהנחה שקיים גבול, האם ניתן להסתפק בהוכחה זו?

2) אם בחלק מההוכחות שפרופ' אגרונובסקי הראה לנו יש התעלמות ממקרי קצה, האם ניתן להתעלם מהם במבחן?

בתודה מראש, Avichai 20:21, 26 בינואר 2013 (IST)

(לא מרצה / מתרגל) שאלתי אותו במייל והעלתי עדכון להוכחות. הוא ביקש שנדע גם את ההוכחה להכללה של משפט קושי. --דביר חדד 15:06, 29 בינואר 2013 (IST)


דביר- פרופ' אגרונובסקי עבר על ההוכחות שלך? - זה ההוכחות שהוא רוצה שנכתוב? (צריך גם את של רול ואת שתי הפשרויות למבחן קושי של טורים??)


אני אשלח לו מייל עם ההוכחות בדיוק, ומחר גם אפגוש אותו. ככה שרק אז אוכל לענות ב100%. כרגע מדובר בדיוק בהוכחות שהוא נתן בכיתה, פלוס ההערות שהוא הוסיף בעקבות שאלות שנשלחו אליו במייל. --דביר חדד 23:56, 30 בינואר 2013 (IST)

הועלה עדכון לעמוד של הקורס --דביר חדד 21:30, 31 בינואר 2013 (IST)

היינה-בורל

מדיה:Example.ogg

למדנו את משפט היינה בורל ?

מערכי תירגול במשפט ערך הביניים (תיכוניסטים)

במערך התרגול של משפט ערך הביניים יש ארבעה תרגילים. אפשר לצרף אליהם פתרונות לבדיקה עצמית ?

שאלה על הקשר בין פונקציה לנגזרתה

אם פונקציה רציפה אז האם בהכרח גם נגזרתה רציפה ? אם כן אשמח להוכחה ואם לא אשמח להפרכה.

פונקציה רציפה לא גוררת גזירות.. למשל פונקציית הערך המוחלט

תן לי לנסח את עצמי מחדש . אני שואל אם פונקציה רציפה וגזירה אז גם הנגזרת שלה רציפה.

גם לא, למשל הפונקציה הבאה: אם [math]\displaystyle{ x\lt 1 }[/math] אז [math]\displaystyle{ f(x)=1 }[/math], אחרת [math]\displaystyle{ f(x)=x }[/math]. הפונק' גזירה בכל הנקודות למעט 1, ושם גם הנגזרת לא רציפה.

כנראה לא הייתי ברור מספיק. נניח שיש פונקציה f גזירה בכל הממשיים ! (ולכן גם רציפה). האם גם נגזרתה רציפה ? בדוגמא שלך הפונקציה לא גזירה ב-1.


  • טוב, הדיון הזה נהיה קצת הזוי... :) בואו נראה האם הבנתי את השאלה. יש פונקציות רציפות וגזירות כך שנגזרתן אינן רציפה. הדוגמה הסטנדרטית היא: [math]\displaystyle{ f(x)=x^2\sin{\frac{1}{x}} }[/math] עבור [math]\displaystyle{ x\neq 0 }[/math], ו- [math]\displaystyle{ f(0)=0 }[/math]. למרות שהנגזרת באפס קיימת, פונקציית הנגזרת אינה רציפה שם. --לואי 18:03, 2 בפברואר 2013 (IST)

שיעור חזרה לקבוצה של שמחה

מתי מתקיים שיעור החזרה לקבוצה של שמחה הורוביץ'?

  • ההודעה נשלחה במייל ממלי:

שם הקורס : חשבון אינפיניטסימלי 1

שם המרצה : ד"ר הורוביץ שמחה

שעור חזרה עם ד"ר הורוביץ יתקיים ב תאריך 5/2/13 בשעה 16-18 בכיתה 202/103

הבוחן השני (תיכוניסטים)

אפשר הסבר לשאלה 3 סעיף ג', למה x = 0 היא נקודת אי רציפות ממין שני?

צריך ללמוד הוכחות של משפטים שאינם ברשימה?

בפרט, צריך לדעת הוכחות של משפטים שההוכחות מהרשימה מסתמכות עליהם? למשל, ההוכחה של משפט לגרנז' מסתמכת על הלמה של רול, שבעצמה נשענת על משפט פרמה- האם כל ההוכחות הפנימיות דרושות?

זאת שאלה מעולה. למרצים. :) --לואי 17:56, 3 בפברואר 2013 (IST)


תשובתו של פרופ' אגרנובסקי הייתה כדלקמן: יש להציג את ההוכחות למשפטים כפי שנלמד בכתה. במשפט לגראנז' על ערך ממוצע יש לציין, במקום המתאים, שנעשה שימוש בלמה של רול, ולצטט אותה. אין חובה להוכיח אותה, אם כי זה בהחלט אפשרי.

רציפות במידה שווה של אקספוננט ולאן

האם האקספוננט רציף במ"ש על כל הישר הממשי ואותה שאלה לגבי ln x בין 0 לאינסוף אם אפשר לצרף הוכחה תודה

נמצא במערכי תרגול ובשיעורי הבית. --לואי 17:57, 3 בפברואר 2013 (IST)
  • (לא מתרגל) בנוגע לlnx אפשר לראות כי היא לא חסומה על (0,1),והוא תת קטע של הקטע המדובר, לכן היא לא רציפה שם במ"ש ולכן לא רציפה במ"ש גם בקטע המקורי.

בנוגע לe^x אפשר לקחת שתי סדרות ולהפריך זאת, לדוגמא על ידי Xn=n+1/n וכן Yn=n. זה יוצא קצת ארוך ועם הרבה לופיטל, אבל בסוף מתקבל שהגבול הוא מינוס אינסוף. אפשר גם לקחת Xn=lnn+1/n וכן Yn=lnn ולקבל כי ההפרש של הפונ' שואף ל-1, זה מעט קצת יותר.

איפה אפשר למצוא מבחנים של פרופסור אגרנובסקי?

או בכלל?...

http://u.cs.biu.ac.il/~sheinee/

ודביר חדד העלה מבחנים ממקומות אחרים: http://www.math-wiki.com/index.php?title=%D7%90%D7%99%D7%A0%D7%A4%D7%99_1_-_%D7%9E%D7%91%D7%97%D7%A0%D7%99%D7%9D_%D7%9E%D7%90%D7%95%D7%A0%D7%99%D7%91%D7%A8%D7%A1%D7%99%D7%98%D7%90%D7%95%D7%AA_%D7%A9%D7%95%D7%A0%D7%95%D7%AA

בהצלחה לנו (:

האם אפשר להסתמך על ההגדרה של

0^0=1?

כי נוסחת טיילור, אם הבנתי נכון, מתבססת על ההגדרה הזאת. (וזה לא מובן מאליו)

  • (לא מתרגל) נוסחאת טיילור מתבססת על 3 דברים במקרה שבו k=0 מתקבל בסכום : 1=0^(x-x0), הנגזרת האפס של פו' בנקודה שווה לערך הפו' בנקודה, ו1=!0.

איך מראים שלמשוואה tanx=x יש אינסוף פתרונות?

תודה..

tg(pi/4+pi*k)=1 tg(-pi/4+pi*k)=-1 הפונקציה רציפה בקטע הנ"ל ולכן לפי ערך הביניים קיימות אינסוף נקודות שבהן f(x)=0

בפתרון תרגיל 12 שאלה 9 סעיף ב

למה:

[math]\displaystyle{ lim_{x\rightarrow \infty } \frac{3e^{3x}-5}{e^{3x}-5x}= lim_{x\rightarrow \infty } \frac{9e^{3x}}{3e^{3x}-5} }[/math]  ?

לופיטל

נכון! מהמם, תודה (:


עוד שאלה: בסעיף ד הבנתי שהשתמשנו בלופיטל:

[math]\displaystyle{ e^{lim_{x\rightarrow \infty}\frac{lnx}{x}}=e^{lim_{x\rightarrow \infty}\frac{\frac{1}{x}}{1}} }[/math]

אבל למה בלי נוסחת הגזירה של מנה?

בלהופיטל גוזרים את המונה והמכנה בנפרד...


אוף, נכון...

כמה שאלות לגבי המבחן (תיכוניסטים)

מישהו יודע מתי המבחן יגמר ? (עם תוספת זמן ובלי תוספת זמן)

מה יהיה מבנה המבחן והאם תהיה בחירה ?

אפשר בבקשה לפרסם פתרון למבחן של המתמטיקאים מועד א'?

רוב תודות!

אני חושב שהמתרגלים יצאו לחופש =) אפשר לכתוב פתרונות בעצמנו כמו שהתיכוניסטים עשו (ראיתי באתר שלהם בשנה שעברה) ואז אפשר לבקש מהמתרגלים שיעלו לכולם ואולי גם יבדקו אם זה נכון מה שעשינו.

רעיון מעולה!אז תכתוב אתה ותעלה לאתר לכולם?

איך ללמוד למועד ב?

מישהו יכול להמליץ לי על דרך טובה להתכונן למועד ב? אני די תקוע...

בדיקת גזירות

איך בודקים אם פונקצייה גזירה פעמיים, או שלושה פעמים, וכו׳ (עד הרמה הn)??

אם זו פונקציה אלמנטרית היא גזירה אינסוף פעמים בתחום הגדרתה.

כדי לבדוק גזירות פונקציה מפוצלת למשל פשוט צריך לבדוק לפי ההגדרה. בהנחה שבכל תחום הפונקציה היא פונקציה גזירה (למשל אלמנטרית שמוגדרת בכל הממשיים) אז הנקודות היחידות שצריך לבדוק לפי הגדרה הן הנקודות שבין התחומים המפוצלים. אם הפונקציה היתה גזירה אז אפשר לרשום את פונקציית הנגזרת. כלומר את הגדרה של פונקציית הנגזרת בכל נקודה. אחרי שרושמים אותה שוב אפשר לבחון אם פונקציה זו שהתקבלה, זאת אומרת פונקציית הנגזרת הראשונה, גזירה בכל נקודה או לא בדיוק כמו שעשינו בשלב הקודם. --מני 00:34, 22 בפברואר 2013 (IST)

סמסטר ב'

מתי מתחיל סמסטר ב'? (לתיכוניסטים)

מה זה קשור לתיכוניסטים? מתחיל לכולם ב-26/2

ללומדים עם ד"ר מיכאל בשימושי המחשב

באיזה יום ושעה יש את ההרצאה?

בחירת c בנוסחת טיילור עם שארית לגרנג'

איך בוחרים את c? אני יודע שהוא בין x לx0 אבל זה אומר שניתן לבחור כל ערך ביניהם? זה לא ישנה את הקירוב?

  • (לא מתרגל) לא בוחרים את c. משפט טיילור מבטיח שהוא קיים, זה הכל - אי אפשר לדעת עליו כלום. המידע היחיד עליו שהוא נמצא בין X לX0. ברוב התרגילים זה עוזר להעריך את השארית, שכן אפשר לאמר שהנגזרת ה-n+1 בטוח קטנה מהצבת ערך הקצה(כלומר הנגזרת הn+1 בX או בX0, תלוי בפונקציה).

איך מחשבים את הגבול הבא

sqrt(x)sin(1/x) אשמח לעזרה..תודה מראש...x שואף לאינסוף..שכחתי לציין..

(לא מתרגל / מרצה) x שואף למה? --גיא (לא מתרגל / מרצה) 19:24, 11 במאי 2013 (IDT)

(לא מתרגל / מרצה) פתרון:
[math]\displaystyle{ \lim_{x\rightarrow\infty}\sqrt{x}\cdot\sin{\frac{1}{x}}=\left \{ y=\frac{1}{x}\ ; \ y\rightarrow 0 \right \}=\lim_{y\rightarrow 0}\frac{\sin y}{\sqrt{y}}=\left \{ L'hopital \right \}=\lim_{y\rightarrow 0}\frac{\cos{y}}{\frac{1}{2\sqrt{y}}}=\lim_{y\rightarrow 0}2\sqrt y\cos y=0 }[/math] --גיא (לא מתרגל / מרצה) 20:18, 11 במאי 2013 (IDT)

שאלה חשובה לגבי הגדרת גבול של פונקציות

מדוע הטיעון האינטואיטיבי הבא לא שקול בדיוק למה שאומרת ההגדרה של גבול פונקציות. כלומר אפשר לקבל דוגמה שבה ההגדרה הפורמלית של גבול פונקציות מתקיימת בעוד שהטיעון האינטואיטיבי לא מתקיים?

הטיעון הוא שככל ש-X קרוב יותר ל-Xo, כך ערכי הפונקציה קרובים יותר לגבול L.

ההגדרה הפורמלית אומרת שלכל סביבת אפסילון של L קיימת סביבת דלתא של Xo כך שלכל x ששייך לסביבת דלתא של Xo מתקיים ש f(x) שייך לסביבת אפסילון של L.

אשמח לראות דוגמה שבה ההגדרה הפורמלית מתקיימת, בעוד שהטיעון האינטואיטיבי לא מתקיים.

אם אין דוגמה כזו, אזי הטיעון האינטואיטיבי משקף באופן מושלם את ההגדרה הפורמלית, רק שהוא לא כתוב בכתיב מתמטי פורמלי?

תודה מראש.