שיטות אינטגרציה: הבדלים בין גרסאות בדף
יהודה שמחה (שיחה | תרומות) אין תקציר עריכה |
|||
שורה 1: | שורה 1: | ||
בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן. | בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן. | ||
== אינטגרציה "רגילה" == | ==אינטגרציה "רגילה"== | ||
הכוונה היא לבצע את האינטגרל לפי חוקי הגזירה. לדוגמא, | |||
<math>\int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C</math> | |||
<math>\int \left(e^x+\frac{1}{x} \right )dx=e^x+\ln | |||
===דף אינטגרלים=== | |||
[[מדיה:אינטגרלים.pdf|ראה כאן]] | [[מדיה:אינטגרלים.pdf|ראה כאן]] | ||
=== השלמה לריבוע === | ===השלמה לריבוע=== | ||
כאשר נקבל פונקציה רציונאלית שבמונה שלה יש מספר ובמכנה שלה פולינום ממעלה שניה, ניתן להשלים את הפולינום לריבוע ולהעזר ב- <math>\arctan</math> . | |||
כאשר נקבל פונקציה רציונאלית שבמונה שלה יש מספר ובמכנה שלה פולינום ממעלה | |||
====דוגמא==== | |||
<math>\int\frac{dx}{x^2+x+\frac{5}{4}}</math> | |||
נעזר בהשלמה לריבוע של המכנה. נקבל: | |||
== | <math>\int\frac{dx}{x^2+x+\frac{5}{4}}=\int\frac{dx}{\left(x+\frac{1}{2}\right)^2+1}=\arctan\left(x+\frac{1}{2}\right)+C</math> | ||
לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים: | ==אינטגרציה בחלקים== | ||
לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים: | |||
= | <math>\int f'g=f\cdot g-\int fg'</math> (ניתן לוודא על ידי גזירה). | ||
===דוגמא=== | |||
<math>\int\ln(x)dx</math> | |||
לפי השיטה, נסמן <math>f' | לפי השיטה, נסמן <math>f'(x)=1\ ,\ g(x)=\ln(x)</math> . | ||
לכן נקבל <math>f(x)=x | לכן נקבל <math>f(x)=x\ ,\ g'(x)=\frac{1}{x}</math> . | ||
לפי נוסחת אינטגרציה בחלקים, נקבל: | לפי נוסחת אינטגרציה בחלקים, נקבל: | ||
<math>\int \ln | <math>\int\ln(x)dx=x\ln(x)-\int x\cdot\frac{1}{x}dx=x\ln(x)-\int 1\,dx=x\ln(x)-x+C</math> | ||
[[אינטגרציה בחלקים|הרחבה]] | [[אינטגרציה בחלקים|הרחבה]] | ||
== אינטגרציה בהצבה == | ==אינטגרציה בהצבה== | ||
לפי כלל השרשרת, אנו מקבלים: | |||
<math>\int f(g(x))\cdot g'(x)dx=F(g(x))+C</math> (ניתן לוודא על-ידי גזירה). | |||
<math>\int f | |||
=== | ===דוגמא=== | ||
<math>\int\frac{\sin(2x)}{a+\sin^2(x)}dx</math> כאשר <math>a>0</math> . | |||
נבצע הצבה: <math>u=\sin^2(x)\ \Rightarrow\ du=2\sin(x)\cos(x)dx=\sin(2x)dx\</math> | |||
מקבלים: | |||
<math>\int \frac{\sin | <math>\int\frac{\sin(2x)}{a+\sin^2(x)}dx=\int\frac{du}{a+u}=\ln(a+u)+C=\ln\big(a+\sin^2(x)\big)+C</math> (נזכור כי <math>a+u>0</math> , לכן אין צורך בערך מוחלט). | ||
[[שיטת ההצבה|הרחבה]] | [[שיטת ההצבה|הרחבה]] | ||
== ההצבה הטריגונומטרית האוניברסלית == | ==ההצבה הטריגונומטרית האוניברסלית== | ||
בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב <math>u=\tan\left(\frac{x}{2}\right)</math> . | |||
נזכור כי <math>1+\tan^2(\alpha)=\frac{1}{\cos^2(\alpha)}</math> , ונקבל <math>\cos^2\left(\frac{x}{2}\right)=\frac{1}{1+\tan^2\left(\frac{x}{2}\right)}=\frac{1}{1+u^2}</math> . | |||
נקבל בנוסף <math>\cos(x)=2\cos^2\left(\frac{x}{2}\right)-1=\frac{2}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2}</math> . | |||
לכן: | |||
<math>\sin(x)=\sqrt{1-\cos^2(x)}=\sqrt{1-\left(\frac{1-u^2}{1+u^2}\right)^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}=</math> | |||
<math>\ | <math>\sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2}</math> | ||
<math> | כמו כן, <math>x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du</math> . | ||
לסיכום, | |||
<math>\boxed{u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du}</math> | |||
===דוגמא=== | |||
<math>\int\frac{dx}{2+2\sin(x)}</math> | |||
= | נעזר בהצבה הטריגונומטרית האוניברסלית. נציב <math>u=\tan\left(\frac{x}{2}\right)</math> . נקבל: | ||
<math>\int\frac{1}{2+2\cdot \ | <math>\int\frac{dx}{2+2\sin(x)}=\frac{1}{2}\int\frac{1}{1+\frac{2u}{1+u^2}}\cdot\frac{2}{1+u^2}du=\frac{1}{2}\int\frac{1+u^2}{u^2+2u+1}\cdot\frac{2}{1+u^2}du</math> | ||
<math>=\int\frac{du}{(u+1)^2}=-\frac{1}{u+1}+C=-\frac{1}{1+\tan\left(\frac{x}{2}\right)}+C</math> | |||
[[מדיה:09Infi2Universal.pdf|הרחבה]] | |||
== | ==פירוק לשברים חלקיים== | ||
כאשר נקבל פונקציה רציונאלית שבמונה שלה פולינום ממעלה נמוכה מאשר במכנה שלה, נרצה לפרק את השבר לשברים חלקיים אשר סכומם הוא השבר המקורי, וקל לבצע אינטגרל לכל אחד מהם בנפרד. ננסה לפרק אותו לגורמים לינאריים ולגורמים ממעלה שניה. | |||
[[מדיה: | [[מדיה:שברים חלקיים.pdf|הסבר ודוגמא]] | ||
==הצבות אוילר== | |||
הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם <math>x</math> ו- <math>\sqrt{ax^2+bx+c}</math> . | |||
== | ===אוילר 1 - הפולינום פריק=== | ||
נניח כי הפולינום <math>ax^2+bx+c</math> פריק (מעל הממשיים, כמובן). נסמן <math>ax^2+bx+c=a(x-\alpha)(x-\beta)</math> . | |||
הצבת אוילר: נציב <math>\sqrt{ax^2+bx+c}=u(x-\alpha)</math> (אפשר גם את השורש השני). נביע את <math>x</math> באמצעות <math>u</math> , ונוכל למצוא גם את <math>x</math> וגם את <math>\sqrt{ax^2+bx+c}</math> . | |||
====דוגמא==== | |||
<math>\int\frac{dx}{x\sqrt{x^2-7x+6}}</math> | |||
נעזר בהצבת אוילר: נציב <math>\sqrt{x^2-7x+6}=u(x-1)</math> . | |||
לכן <math>(x-1)(x-6)=u^2(x-1)^2</math> , כלומר <math>x-6=u^2(x-1)</math> , ומכאן <math>x=\frac{u^2-6}{u^2-1}</math> . | |||
== | לכן <math>dx=\frac{2u(u^2-1)-2u(u^2-6)}{(u^2-1)^2}du=\frac{10u}{(1-u^2)^2}du</math> . | ||
בנוסף, <math>\sqrt{x^2-7x+6}=u(x-1)=u\left(\frac{u^2-6}{u^2-1}-1\right)=-\frac{5u}{u^2-1}</math> | |||
מקבלים: | מקבלים: | ||
<math>\int\frac{ | <math>\int\frac{dx}{x\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2-6}{u^2-1}\cdot\frac{5u}{u^2-1}}\cdot\frac{10u}{(1-u^2)^2}du=-2\int\frac{du}{u^2-6}</math> כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים. | ||
=== אוילר 2 - פולינום יותר כללי === | ===אוילר 2 - פולינום יותר כללי=== | ||
ישנן שתי אפשרויות: | |||
# בהינתן <math>a>0</math> , נציב <math>\sqrt{ax^2+bx+c}=\sqrt{a}x+u</math> . | |||
# בהינתן <math>c>0</math> , נציב <math>\sqrt{ax^2+bx+c}=xu+\sqrt c</math> . | |||
נביע את <math>x</math> באמצעות <math>u</math> , ונוכל למצוא את <math>dx</math> ואת <math>\sqrt{ax^2+bx+c}</math> . | |||
====דוגמא==== | |||
<math>\int\frac{dx}{\sqrt{x^2-7x+6}}</math> | |||
ניעזר בהצבת אוילר (האופציה הראשונה): נציב <math>\sqrt{x^2-7x+6}=x+u</math> . | |||
נעלה בריבוע ונקבל <math>x^2-7x+6=x^2+2xu+u^2</math> , כלומר <math>x=\frac{6-u^2}{2u+7}</math> . | |||
== | לכן <math>dx=\frac{-2u(2u+7)-2(6-u^2)}{(2u+7)^2}du=-2\cdot\frac{u^2+7u+6}{(2u+7)^2}du</math> , | ||
וכן <math>\sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7}</math> . | |||
מקבלים: | מקבלים: | ||
<math>\int\frac{ | <math>\int\frac{dx}{\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2+7u+6}{2u+7}}\cdot2\cdot\frac{u^2+7u+6}{(2u+7)^2}du=-\int\frac{2}{2u+7}du=-\ln(|2u+7|)+C=-\ln\left(\left|\sqrt{x^2-7x+6}-x\right|\right)+C</math> | ||
[[מדיה:09Infi2Universal.pdf|הרחבה]] | [[מדיה:09Infi2Universal.pdf|הרחבה]] | ||
== פונקציה רציונאלית == | ==פונקציה רציונאלית== | ||
קיימים מספר מצבים עבור פונקציות רציונאליות <math>f(x)=\frac{p(x)}{q(x)}</math> (כאשר <math>p(x),q(x)</math> פולינומים). להלן המצבים: | |||
קיימים מספר מצבים עבור פונקציות רציונאליות <math>f | |||
=== מצב ראשון <math>\deg | ===מצב ראשון <math>\deg(p)=\deg(q)-1</math>=== | ||
במצב כזה, <math>\deg | במצב כזה, <math>\deg(q')=\deg(p)</math> , לכן קיים קבוע <math>c</math> שעבורו <math>h=cp-q'</math> יהיה ממעלה יותר נמוכה, כלומר <math>\deg(h)<\deg(q)-1</math> . נקבל: | ||
<math>\int f=\int\frac{p}{q}=\int\frac{ | <math>\int f=\int\frac{p}{q}=\int\frac{\frac{h+q'}{c}}{q}=\frac{1}{c}\cdot\int\frac{h}{q}+\frac{\ln(|q|)}{c}\cdot</math> . עוברים למצב הבא. | ||
===מצב שני <math>\deg(p)<\deg(q)-1</math>=== | |||
מפרקים לשברים חלקיים כפי שמוסבר בקובץ [[מדיה:שברים חלקיים.pdf|הזה]]. | מפרקים לשברים חלקיים כפי שמוסבר בקובץ [[מדיה:שברים חלקיים.pdf|הזה]]. | ||
=== מצב שלישי <math>\deg | ===מצב שלישי <math>\deg(p)\ge\deg(q)</math>=== | ||
מבצעים חילוק פולינומים וחוזרים למצבים הקודמים. | מבצעים חילוק פולינומים וחוזרים למצבים הקודמים. | ||
[[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|הרחבה]] | [[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|הרחבה]] | ||
== סיכום == | ==סיכום== | ||
'''[[מדיה:אינטגרלים לא-מסוימים.pdf|דף מסכם]]''' | '''[[מדיה:אינטגרלים לא-מסוימים.pdf|דף מסכם]]''' |
גרסה מ־12:18, 3 בנובמבר 2016
בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.
אינטגרציה "רגילה"
הכוונה היא לבצע את האינטגרל לפי חוקי הגזירה. לדוגמא,
[math]\displaystyle{ \int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C }[/math]
דף אינטגרלים
השלמה לריבוע
כאשר נקבל פונקציה רציונאלית שבמונה שלה יש מספר ובמכנה שלה פולינום ממעלה שניה, ניתן להשלים את הפולינום לריבוע ולהעזר ב- [math]\displaystyle{ \arctan }[/math] .
דוגמא
[math]\displaystyle{ \int\frac{dx}{x^2+x+\frac{5}{4}} }[/math]
נעזר בהשלמה לריבוע של המכנה. נקבל:
[math]\displaystyle{ \int\frac{dx}{x^2+x+\frac{5}{4}}=\int\frac{dx}{\left(x+\frac{1}{2}\right)^2+1}=\arctan\left(x+\frac{1}{2}\right)+C }[/math]
אינטגרציה בחלקים
לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים:
[math]\displaystyle{ \int f'g=f\cdot g-\int fg' }[/math] (ניתן לוודא על ידי גזירה).
דוגמא
[math]\displaystyle{ \int\ln(x)dx }[/math]
לפי השיטה, נסמן [math]\displaystyle{ f'(x)=1\ ,\ g(x)=\ln(x) }[/math] .
לכן נקבל [math]\displaystyle{ f(x)=x\ ,\ g'(x)=\frac{1}{x} }[/math] .
לפי נוסחת אינטגרציה בחלקים, נקבל:
[math]\displaystyle{ \int\ln(x)dx=x\ln(x)-\int x\cdot\frac{1}{x}dx=x\ln(x)-\int 1\,dx=x\ln(x)-x+C }[/math]
אינטגרציה בהצבה
לפי כלל השרשרת, אנו מקבלים:
[math]\displaystyle{ \int f(g(x))\cdot g'(x)dx=F(g(x))+C }[/math] (ניתן לוודא על-ידי גזירה).
דוגמא
[math]\displaystyle{ \int\frac{\sin(2x)}{a+\sin^2(x)}dx }[/math] כאשר [math]\displaystyle{ a\gt 0 }[/math] .
נבצע הצבה: [math]\displaystyle{ u=\sin^2(x)\ \Rightarrow\ du=2\sin(x)\cos(x)dx=\sin(2x)dx\ }[/math]
מקבלים:
[math]\displaystyle{ \int\frac{\sin(2x)}{a+\sin^2(x)}dx=\int\frac{du}{a+u}=\ln(a+u)+C=\ln\big(a+\sin^2(x)\big)+C }[/math] (נזכור כי [math]\displaystyle{ a+u\gt 0 }[/math] , לכן אין צורך בערך מוחלט).
ההצבה הטריגונומטרית האוניברסלית
בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב [math]\displaystyle{ u=\tan\left(\frac{x}{2}\right) }[/math] .
נזכור כי [math]\displaystyle{ 1+\tan^2(\alpha)=\frac{1}{\cos^2(\alpha)} }[/math] , ונקבל [math]\displaystyle{ \cos^2\left(\frac{x}{2}\right)=\frac{1}{1+\tan^2\left(\frac{x}{2}\right)}=\frac{1}{1+u^2} }[/math] .
נקבל בנוסף [math]\displaystyle{ \cos(x)=2\cos^2\left(\frac{x}{2}\right)-1=\frac{2}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2} }[/math] .
לכן:
[math]\displaystyle{ \sin(x)=\sqrt{1-\cos^2(x)}=\sqrt{1-\left(\frac{1-u^2}{1+u^2}\right)^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}= }[/math]
[math]\displaystyle{ \sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2} }[/math]
כמו כן, [math]\displaystyle{ x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du }[/math] .
לסיכום, [math]\displaystyle{ \boxed{u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du} }[/math]
דוגמא
[math]\displaystyle{ \int\frac{dx}{2+2\sin(x)} }[/math]
נעזר בהצבה הטריגונומטרית האוניברסלית. נציב [math]\displaystyle{ u=\tan\left(\frac{x}{2}\right) }[/math] . נקבל:
[math]\displaystyle{ \int\frac{dx}{2+2\sin(x)}=\frac{1}{2}\int\frac{1}{1+\frac{2u}{1+u^2}}\cdot\frac{2}{1+u^2}du=\frac{1}{2}\int\frac{1+u^2}{u^2+2u+1}\cdot\frac{2}{1+u^2}du }[/math]
[math]\displaystyle{ =\int\frac{du}{(u+1)^2}=-\frac{1}{u+1}+C=-\frac{1}{1+\tan\left(\frac{x}{2}\right)}+C }[/math]
פירוק לשברים חלקיים
כאשר נקבל פונקציה רציונאלית שבמונה שלה פולינום ממעלה נמוכה מאשר במכנה שלה, נרצה לפרק את השבר לשברים חלקיים אשר סכומם הוא השבר המקורי, וקל לבצע אינטגרל לכל אחד מהם בנפרד. ננסה לפרק אותו לגורמים לינאריים ולגורמים ממעלה שניה.
הצבות אוילר
הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם [math]\displaystyle{ x }[/math] ו- [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .
אוילר 1 - הפולינום פריק
נניח כי הפולינום [math]\displaystyle{ ax^2+bx+c }[/math] פריק (מעל הממשיים, כמובן). נסמן [math]\displaystyle{ ax^2+bx+c=a(x-\alpha)(x-\beta) }[/math] .
הצבת אוילר: נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=u(x-\alpha) }[/math] (אפשר גם את השורש השני). נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math] , ונוכל למצוא גם את [math]\displaystyle{ x }[/math] וגם את [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .
דוגמא
[math]\displaystyle{ \int\frac{dx}{x\sqrt{x^2-7x+6}} }[/math]
נעזר בהצבת אוילר: נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=u(x-1) }[/math] .
לכן [math]\displaystyle{ (x-1)(x-6)=u^2(x-1)^2 }[/math] , כלומר [math]\displaystyle{ x-6=u^2(x-1) }[/math] , ומכאן [math]\displaystyle{ x=\frac{u^2-6}{u^2-1} }[/math] .
לכן [math]\displaystyle{ dx=\frac{2u(u^2-1)-2u(u^2-6)}{(u^2-1)^2}du=\frac{10u}{(1-u^2)^2}du }[/math] .
בנוסף, [math]\displaystyle{ \sqrt{x^2-7x+6}=u(x-1)=u\left(\frac{u^2-6}{u^2-1}-1\right)=-\frac{5u}{u^2-1} }[/math]
מקבלים:
[math]\displaystyle{ \int\frac{dx}{x\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2-6}{u^2-1}\cdot\frac{5u}{u^2-1}}\cdot\frac{10u}{(1-u^2)^2}du=-2\int\frac{du}{u^2-6} }[/math] כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.
אוילר 2 - פולינום יותר כללי
ישנן שתי אפשרויות:
- בהינתן [math]\displaystyle{ a\gt 0 }[/math] , נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=\sqrt{a}x+u }[/math] .
- בהינתן [math]\displaystyle{ c\gt 0 }[/math] , נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=xu+\sqrt c }[/math] .
נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math] , ונוכל למצוא את [math]\displaystyle{ dx }[/math] ואת [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math] .
דוגמא
[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-7x+6}} }[/math]
ניעזר בהצבת אוילר (האופציה הראשונה): נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u }[/math] .
נעלה בריבוע ונקבל [math]\displaystyle{ x^2-7x+6=x^2+2xu+u^2 }[/math] , כלומר [math]\displaystyle{ x=\frac{6-u^2}{2u+7} }[/math] .
לכן [math]\displaystyle{ dx=\frac{-2u(2u+7)-2(6-u^2)}{(2u+7)^2}du=-2\cdot\frac{u^2+7u+6}{(2u+7)^2}du }[/math] ,
וכן [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7} }[/math] .
מקבלים:
[math]\displaystyle{ \int\frac{dx}{\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2+7u+6}{2u+7}}\cdot2\cdot\frac{u^2+7u+6}{(2u+7)^2}du=-\int\frac{2}{2u+7}du=-\ln(|2u+7|)+C=-\ln\left(\left|\sqrt{x^2-7x+6}-x\right|\right)+C }[/math]
פונקציה רציונאלית
קיימים מספר מצבים עבור פונקציות רציונאליות [math]\displaystyle{ f(x)=\frac{p(x)}{q(x)} }[/math] (כאשר [math]\displaystyle{ p(x),q(x) }[/math] פולינומים). להלן המצבים:
מצב ראשון [math]\displaystyle{ \deg(p)=\deg(q)-1 }[/math]
במצב כזה, [math]\displaystyle{ \deg(q')=\deg(p) }[/math] , לכן קיים קבוע [math]\displaystyle{ c }[/math] שעבורו [math]\displaystyle{ h=cp-q' }[/math] יהיה ממעלה יותר נמוכה, כלומר [math]\displaystyle{ \deg(h)\lt \deg(q)-1 }[/math] . נקבל:
[math]\displaystyle{ \int f=\int\frac{p}{q}=\int\frac{\frac{h+q'}{c}}{q}=\frac{1}{c}\cdot\int\frac{h}{q}+\frac{\ln(|q|)}{c}\cdot }[/math] . עוברים למצב הבא.
מצב שני [math]\displaystyle{ \deg(p)\lt \deg(q)-1 }[/math]
מפרקים לשברים חלקיים כפי שמוסבר בקובץ הזה.
מצב שלישי [math]\displaystyle{ \deg(p)\ge\deg(q) }[/math]
מבצעים חילוק פולינומים וחוזרים למצבים הקודמים.