83-112 חדו"א 1 להנדסה/נושאי הקורס: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 153: שורה 153:


==הרצאה 11==
==הרצאה 11==
*גזירות.
===הגדרת הנגזרת===
**<math>f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math>
*<math>f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math>
 
*<math>\lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} =\{h=x-x_0\} = \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}</math>
**הסבר לגבי שיטת ההצבה בה השתמשנו לעיל:
**נניח כי <math>\lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}=f'(x_0)</math> ונוכיח כי <math>\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math>, והוכחה דומה בכיוון ההפוך.
**תהי <math>x_0\neq x_n\to x_0</math> נגדיר את הסדרה <math>0\neq h_n=x_n-x_0\to 0</math>.
**כיוון ש<math>\frac{f(x_0+h_n)-f(x_0)}{h_n}\to f'(x_0)</math> נובע כי <math>\frac{f(x_n)-f(x_0)}{x_n-x_0}\to f'(x_0)</math>.
*אם f גזירה בנקודה, היא רציפה בנקודה:
**צ"ל <math>\lim_{x\to x_0}f(x)=f(x_0)</math>
**לפי אריתמטיקה של גבולות זה שקול ל <math>\lim_{x\to x_0}f(x)-f(x_0)=0</math>
**לפי עקרון win (קיצור של wouldn't it be nice?) מתקיים כי <math>\lim_{x\to x_0}f(x)-f(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\cdot (x-x_0)=f'(x_0)\cdot 0 = 0</math>
*פונקציה הערך המוחלט אינה גזירה באפס
**<math>(|x|)'(0) = \lim_{h\to 0}\frac{|h|-|0|}{h}=\lim\frac{|h|}{h}</math> וגבול זה אינו קיים, כיוון שהגבולות החד צדדים שונים.
**ניתן לשים לב גם ש<math>|x|=\sqrt{x^2}</math>, וכמו כן נראה בהמשך כי<math>\sqrt{x}</math> אינה גזירה באפס.


===הנגזרות של הפונקציות האלמנטריות===
===הנגזרות של הפונקציות האלמנטריות===
שורה 170: שורה 181:
*אקספוננט:
*אקספוננט:
**<math>\lim_{h\to 0}\frac{a^h-1}{h} = \{t=a^h-1, h=log_a(1+t)\} = \lim_{t\to 0} \frac{t}{log_a(1+t)} = \frac{1}{log_a(e)} = \frac{1}{\frac{ln(e)}{ln(a)}}=ln(a)</math>
**<math>\lim_{h\to 0}\frac{a^h-1}{h} = \{t=a^h-1, h=log_a(1+t)\} = \lim_{t\to 0} \frac{t}{log_a(1+t)} = \frac{1}{log_a(e)} = \frac{1}{\frac{ln(e)}{ln(a)}}=ln(a)</math>
***הסבר לגבי שיטת ההצבה שהשתמשנו בה לעיל:
***תהי <math>h_n\to 0</math>, נסמן <math>t_n=a^{h_n}-1\to 0</math>.
***לכן <math>\frac{a^{h_n}-1}{h_n}=\frac{t_n}{log_a(t_n+1)}\to ln(a)</math>.
**<math>(a^x)' = \lim_{h\to 0}\frac{a^{x+h}-a^x}{h}= \lim_{h\to 0}a^x\cdot \frac{a^h-1}{h}=a^x\cdot ln(a)</math>
**<math>(a^x)' = \lim_{h\to 0}\frac{a^{x+h}-a^x}{h}= \lim_{h\to 0}a^x\cdot \frac{a^h-1}{h}=a^x\cdot ln(a)</math>
***בפרט נובע כי <math>(e^x)'=e^x</math>.
***בפרט נובע כי <math>(e^x)'=e^x</math>.
*אחד חלקי:
**<math>(\frac{1}{x})'=\lim_{h\to 0}\frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim_{h\to 0}\frac{-1}{x(x+h)}=-\frac{1}{x^2}</math>
*חזקה:
*חזקה:
**<math>(x^\alpha)'=\alpha x^{\alpha-1}</math> לכל <math>\alpha\in \mathbb{R}</math>, הוכחה בהמשך.
**<math>(x^\alpha)'=\alpha x^{\alpha-1}</math> לכל <math>\alpha\in \mathbb{R}</math>, הוכחה בהמשך.
***בפרט:  
***בפרט:  
***<math>(1)'=0</math>
***<math>(1)'=0</math>
***<math>(\frac{1}{x})' = (x^{-1})'=-\frac{1}{x^2}</math>
***<math>(\sqrt{x})'=(x^{\frac{1}{2}})'=\frac{1}{2\sqrt{x}}</math>
***<math>(\sqrt{x})'=(x^{\frac{1}{2}})'=\frac{1}{2\sqrt{x}}</math>



גרסה מ־08:20, 25 בנובמבר 2018

מבחנים מהעבר

נושאי ההרצאות

שימו לב: נושאי ההרצאות יעודכנו במהלך הסמסטר לפי קצב ההתקדמות בפועל.

הרצאה 1

  • מבוא למספרים - טבעיים, שלמים, רציונאליים, ממשיים.
  • שורש 2, 0.999.
  • חזקות.
  • לוגריתמים.
  • מבוא לגבולות (שיטות אלגבריות: כפל בצמוד, הוצאת חזקה משמעותית).
    • [math]\displaystyle{ \lim_{x\to 2}\frac{x^2-4}{x-2} }[/math]
    • [math]\displaystyle{ \lim_{x\to\infty}\frac{2x^2+5x+3}{3x^2-100} }[/math]
    • [math]\displaystyle{ \lim_{x\to \infty}\sqrt{x^2+x+1}-x,\lim_{x\to \infty}\sqrt{x^2+1}-x }[/math]
    • [math]\displaystyle{ \lim_{x\to\infty}x^2-x }[/math]

הרצאה 2

  • כמתים, שלילת כמתים.
  • חסמים.

הרצאה 3

  • ברציונאליים אין לכל קבוצה חסומה מלעיל חסם עליון.
  • הגדרת הגבול של סדרה במובן הצר.

הרצאה 4

  • גבול הוא יחיד.
    • נניח בשלילה שיש שני גבולות שונים. החל משלב מסויים כל איברי הסדרה גדולים מאמצע הקטע בין שני הגבולות וגם קטנים ממנו, בסתירה.
  • הסדרה הקבועה.
  • כל סדרה המתכנסת במובן הצר חסומה.
  • אריתמטיקה (חשבון) גבולות.
    • (אי שיוויון המשולש.)
    • סכום.
    • מכפלה.
    • חלוקה (תרגיל לבית).

הרצאה 5

  • התכנסות במובן הרחב.
  • אחד חלקי 'שואפת לאינסוף' היא אפיסה, ההפך לא נכון.
  • סנדביץ' וחצי סדנביץ'.
  • [math]\displaystyle{ a_n\to 0 \iff |a_n|\to 0 }[/math]
  • חסומה כפול אפיסה היא אפיסה.

הרצאה 6

  • אינדוקציה.
  • ברנולי - אקספוננט חיובי שואף לאפס, אחד או אינסוף.
  • אריתמטיקה מורחבת (הכתיב הוא מקוצר ואינו מדוייק):
    • חסומה כפול אפיסה = אפיסה
    • חסומה חלקי אינסוף = אפיסה
    • [math]\displaystyle{ \infty+\infty=\infty }[/math]
    • [math]\displaystyle{ \infty\cdot\infty=\infty }[/math]
    • [math]\displaystyle{ \infty^\infty=\infty }[/math]
    • [math]\displaystyle{ \frac{1}{0}\neq\infty }[/math]
    • [math]\displaystyle{ \frac{1}{0^+}=\infty }[/math]
    • [math]\displaystyle{ 0^\infty = 0 }[/math]
    • אינסוף כפול סדרה השואפת למספר חיובי = אינסוף.
    • אינסוף כפול סדרההשואפת למספר שלילי = אינסוף.
    • יש גבול סופי + אין גבול סופי = אין גבול סופי.
    • אינסוף ועוד חסומה שווה אינסוף.
    • אם [math]\displaystyle{ a\gt 1 }[/math] אזי [math]\displaystyle{ a^\infty=\infty }[/math]
  • המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול:
    • [math]\displaystyle{ \frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty }[/math]
  • מבחן המנה (ללא הוכחה).
  • הגבול של השורש הn של n.

הרצאה 7

  • סדרה מונוטונית וחסומה מתכנסת.
  • המספר e.
  • [math]\displaystyle{ 2\lt e\lt 4 }[/math].
  • אם [math]\displaystyle{ a_n\to\infty }[/math] אזי [math]\displaystyle{ \left(1+\frac{1}{a_n}\right)^{a_n}\to e }[/math]
    • [math]\displaystyle{ [a_n]\leq a_n \leq [a_n]+1 }[/math], כאשר [math]\displaystyle{ [a_n] }[/math] הוא המספר השלם הגדול ביותר שקטן או שווה ל[math]\displaystyle{ a_n }[/math].
    • [math]\displaystyle{ \left(1+\frac{1}{[a_n]+1}\right)^{[a_n]}\leq\left(1+\frac{1}{a_n}\right)^{a_n}\leq \left(1+\frac{1}{[a_n]}\right)^{[a_n]+1} }[/math]
    • שני הצדדים שואפים לe ולכן לפי כלל הסנדוויץ הסדרה אכן שואפת לe.
  • אם [math]\displaystyle{ a_n\to -\infty }[/math] אזי [math]\displaystyle{ \left(1+\frac{1}{a_n}\right)^{a_n}\to e }[/math]
    • ראשית [math]\displaystyle{ \left(1-\frac{1}{n}\right)^{n}\to \frac{1}{e} }[/math] (הוכחה בקישור לערך על המספר e).
    • כעת חזקה שלילית הופכת את השבר, וניתן לסיים את ההוכחה באופן דומה להוכחה במקרה הקודם.


  • אם [math]\displaystyle{ a_n\to 1 }[/math] אזי [math]\displaystyle{ a_n^{b_n}\to e^{\lim b_n\cdot(a_n-1)} }[/math]
    • [math]\displaystyle{ a_n^{b_n}=\left[\left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\right]^{ b_n\cdot (a_n-1)} }[/math].
    • [math]\displaystyle{ \left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\to e }[/math] בין אם [math]\displaystyle{ a_n-1 }[/math] שלילי או חיובי, לפי הטענות לעיל.
    • שימו לב שאם [math]\displaystyle{ a_n=1 }[/math], אז ממילא מקבלים 1 בנוסחא הסופית, ואז לא צריך לחלק ב[math]\displaystyle{ a_n-1 }[/math] ששווה אפס.


  • דוגמא:
    • [math]\displaystyle{ \lim\left(\frac{n+1}{n-2}\right)^n=e^{\lim n\cdot\left(\frac{n+1}{n-2}-1\right)}=e^{\lim\frac{3n}{n-2}}=e^3 }[/math]

הרצאה 8

  • פונקציות וגבולות של פונקציות, לפי קושי ולפי היינה.

הרצאה 9

  • הגדרת סינוס וקוסינוס ע"י מעגל היחידה.
    • [math]\displaystyle{ sin^2(x)+cos^2(x)=1 }[/math]
    • [math]\displaystyle{ sin(-x)=-sin(x),cos(-x)=cos(x) }[/math]
    • [math]\displaystyle{ sin(a+b)=sin(a)cos(b)+sin(b)cos(a),cos(a+b)=cos(a)cos(b)-sin(a)sin(b) }[/math]
    • [math]\displaystyle{ sin(2x)=2sin(x)cos(x),cos(2x)=cos^2(x)-sin^2(x) }[/math]



  • Sin(x) over x.png
    • עבור זוית [math]\displaystyle{ 0\lt x\lt \frac{\pi}{2} }[/math] שטח המשולש חסום בשטח הגזרה (משולש פיצה עם הקשה) שחסום בשטח המשולש:
    • [math]\displaystyle{ S_{\triangle AOB}\lt S_{\bigcirc AOB}\lt S_{\triangle AOD} }[/math]
    • [math]\displaystyle{ \frac{sin(x)}{2}\lt \frac{x}{2}\lt \frac{tan(x)}{2} }[/math]
      • כיוון ש[math]\displaystyle{ 0\lt sin(x)\lt x }[/math] בתחום [math]\displaystyle{ (0,\frac{\pi}{2}) }[/math], נובע לפי סנדוויץ' ש[math]\displaystyle{ \lim_{x\to 0^+}sin(x)=0 }[/math].
      • כיוון שמדובר בפונקציה אי זוגית, נובע שזה גם הגבול משני הצדדים.
      • כעת בתחום [math]\displaystyle{ (-\frac{\pi}{2},\frac{\pi}{2}) }[/math] הקוסינוס חיובית ולכן [math]\displaystyle{ cos(x)=\sqrt{1-sin^2(x)} }[/math] ונובע כי [math]\displaystyle{ \lim_{x\to 0}cos(x)=1 }[/math].
    • נחלק את אי השיוויון הטריגונומטרי בסינוס ונקבל:
    • [math]\displaystyle{ 1\lt \frac{x}{sin(x)}\lt \frac{1}{cos(x)} }[/math]
    • לפי כלל הסנדביץ [math]\displaystyle{ \lim_{x\to 0^+}\frac{sin(x)}{x}=1 }[/math]
    • כיוון שמדובר בפונקציה זוגית, נובע שהגבול משני הצדדים שווה 1.


  • ראינו ש[math]\displaystyle{ \lim_{x\to 0}\frac{sin(x)}{x}=1 }[/math].
  • שימו לב ש[math]\displaystyle{ \lim_{x\to\infty}\frac{sin(x)}{x}=0 }[/math], כיוון שמדובר בחסומה חלקי שואפת לאינסוף.

הרצאה 10

  • תתי סדרות וגבולות חלקיים (ללא הוכחה)
    • סדרה מתכנסת לגבול אם"ם הגבול החלקי העליון והתחתון שווים לו.
    • אם ניתן לחלק סדרה לתתי סדרות שכולן מתכנסות לאותו גבול, אזי זה גבול הסדרה.
  • מסקנה: גבול של פונקציה קיים בנקודה אם"ם הגבולות החד צדדיים קיימים ושווים לו.


  • גבול של הרכבת פונקציות נכשל ללא רציפות.
    • [math]\displaystyle{ f(x)=\frac{x}{x}, g(x)=0 }[/math] מתקיים כי [math]\displaystyle{ \lim_{x\to 0}f(x)=1,\lim_{x\to 2}g(x)=0 }[/math] אבל [math]\displaystyle{ \lim_{x\to 2}f(g(x))\neq 1 }[/math].
  • רציפות.
  • טענה: אם f רציפה ב[math]\displaystyle{ x_0 }[/math] אזי לכל סדרה [math]\displaystyle{ x_n\to x_0 }[/math] (גם אם אינה שונה מ[math]\displaystyle{ x_0 }[/math]) מתקיים כי [math]\displaystyle{ f(x_n)\to f(x_0) }[/math].
  • הרכבת רציפות: תהי f רציפה ב[math]\displaystyle{ x_0 }[/math] ותהי g רציפה ב[math]\displaystyle{ f(x_0) }[/math]. אזי [math]\displaystyle{ g\circ f }[/math] רציפה ב[math]\displaystyle{ x_0 }[/math].
    • הוכחה:
    • תהי סדרה [math]\displaystyle{ x_0\neq x_n\to x_0 }[/math] אזי [math]\displaystyle{ f(x_n)\to f(x_0) }[/math]
    • לפי הטענה הקודמת, [math]\displaystyle{ g(f(x_n))\to g(f(x_0)) }[/math].


  • מיון אי רציפות.
    • רציפות - הגבול בנקודה שווה לערך בנקודה.
    • סליקה - הגבול קיים וסופי בנקודה, אך שונה מהערך בנקודה או שהפונקציה אינה מוגדרת בנקודה.
    • קפיצתית (מין ראשון) - הגבולות החד צדדיים קיימים סופיים ושונים בנקודה.
    • עיקרית (מין שני) - אחד הגבולות החד צדדיים אינו קיים או שאינו סופי.

הרצאה 11

הגדרת הנגזרת

  • [math]\displaystyle{ f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} }[/math]
  • [math]\displaystyle{ \lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} =\{h=x-x_0\} = \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} }[/math]
    • הסבר לגבי שיטת ההצבה בה השתמשנו לעיל:
    • נניח כי [math]\displaystyle{ \lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}=f'(x_0) }[/math] ונוכיח כי [math]\displaystyle{ \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0) }[/math], והוכחה דומה בכיוון ההפוך.
    • תהי [math]\displaystyle{ x_0\neq x_n\to x_0 }[/math] נגדיר את הסדרה [math]\displaystyle{ 0\neq h_n=x_n-x_0\to 0 }[/math].
    • כיוון ש[math]\displaystyle{ \frac{f(x_0+h_n)-f(x_0)}{h_n}\to f'(x_0) }[/math] נובע כי [math]\displaystyle{ \frac{f(x_n)-f(x_0)}{x_n-x_0}\to f'(x_0) }[/math].
  • אם f גזירה בנקודה, היא רציפה בנקודה:
    • צ"ל [math]\displaystyle{ \lim_{x\to x_0}f(x)=f(x_0) }[/math]
    • לפי אריתמטיקה של גבולות זה שקול ל [math]\displaystyle{ \lim_{x\to x_0}f(x)-f(x_0)=0 }[/math]
    • לפי עקרון win (קיצור של wouldn't it be nice?) מתקיים כי [math]\displaystyle{ \lim_{x\to x_0}f(x)-f(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\cdot (x-x_0)=f'(x_0)\cdot 0 = 0 }[/math]
  • פונקציה הערך המוחלט אינה גזירה באפס
    • [math]\displaystyle{ (|x|)'(0) = \lim_{h\to 0}\frac{|h|-|0|}{h}=\lim\frac{|h|}{h} }[/math] וגבול זה אינו קיים, כיוון שהגבולות החד צדדים שונים.
    • ניתן לשים לב גם ש[math]\displaystyle{ |x|=\sqrt{x^2} }[/math], וכמו כן נראה בהמשך כי[math]\displaystyle{ \sqrt{x} }[/math] אינה גזירה באפס.

הנגזרות של הפונקציות האלמנטריות

  • טריגו:
    • [math]\displaystyle{ \lim_{h\to 0}\frac{1-cos(h)}{h}=\lim_{h\to 0}\frac{sin^2(h)}{h(1+cos(h))}=\lim_{h\to 0}sin(h)\cdot \frac{sin(h)}{h}\cdot \frac{1}{1+cos(h)}=0\cdot 1 \cdot \frac{1}{2}=0 }[/math]
    • [math]\displaystyle{ (sin(x))'=\lim_{h\to 0}\frac{sin(x+h)-sin(x)}{h}=\lim_{h\to 0}\frac{sin(x)cos(h)+sin(h)cos(x)-sin(x)}{h}=\lim_{h\to 0}sin(x)\cdot \frac{cos(h)-1}{h} + cos(x)\cdot \frac{sin(h)}{h}=cos(x) }[/math]
    • באופן דומה [math]\displaystyle{ (cos(x))'=-sin(x) }[/math]
  • לוג:
    • [math]\displaystyle{ \lim_{h\to 0}\frac{log(1+h)}{h}=\lim_{h\to 0}\frac{1}{h}\cdot log(1+h)=\lim_{h\to 0}log\left(\left(1+h\right)^{\frac{1}{h}}\right)=log(e) }[/math]
      • המעבר האחרון נובע מהעובדה שפונקצית הלוג רציפה.
      • (בפרט נובע כי [math]\displaystyle{ \lim_{x\to 0}\frac{ln(1+x)}{x}=1 }[/math].)
    • [math]\displaystyle{ (log(x))'=\lim_{h\to 0}\frac{log(x+h)-log(x)}{h}= \lim_{h\to 0}\frac{log\left(\frac{x+h}{x}\right)}{h}=\lim_{h\to 0}\frac{1}{x}\cdot\frac{log\left(1+\frac{h}{x}\right)}{\frac{h}{x}}=\frac{log(e)}{x} }[/math]
      • בפרט נובע כי [math]\displaystyle{ (ln(x))' = \frac{1}{x} }[/math]
  • אקספוננט:
    • [math]\displaystyle{ \lim_{h\to 0}\frac{a^h-1}{h} = \{t=a^h-1, h=log_a(1+t)\} = \lim_{t\to 0} \frac{t}{log_a(1+t)} = \frac{1}{log_a(e)} = \frac{1}{\frac{ln(e)}{ln(a)}}=ln(a) }[/math]
    • [math]\displaystyle{ (a^x)' = \lim_{h\to 0}\frac{a^{x+h}-a^x}{h}= \lim_{h\to 0}a^x\cdot \frac{a^h-1}{h}=a^x\cdot ln(a) }[/math]
      • בפרט נובע כי [math]\displaystyle{ (e^x)'=e^x }[/math].
  • חזקה:
    • [math]\displaystyle{ (x^\alpha)'=\alpha x^{\alpha-1} }[/math] לכל [math]\displaystyle{ \alpha\in \mathbb{R} }[/math], הוכחה בהמשך.
      • בפרט:
      • [math]\displaystyle{ (1)'=0 }[/math]
      • [math]\displaystyle{ (\frac{1}{x})' = (x^{-1})'=-\frac{1}{x^2} }[/math]
      • [math]\displaystyle{ (\sqrt{x})'=(x^{\frac{1}{2}})'=\frac{1}{2\sqrt{x}} }[/math]

הרצאה 12

  • נוסחאות הגזירה.

הרצאה 13

  • פונקציה הופכית, נגזרת של פונקציה הופכית.

הרצאה 14

  • משפט ערך הביניים.
  • תתי סדרות, גבול חלקי עליון ותחתון (כנראה ללא הוכחה).
  • משפטי ויירשטראס.

הרצאה 15

  • משפט פרמה.
  • משפט רול.
  • משפט לגראנז'.
  • משפט לגראנז' המוכלל.

הרצאה 16

  • כלל לופיטל (הוכחה לחלק מהמקרים).
  • כיצד להעזר בלופיטל בכל אחד מהמקרים הבעייתיים.

הרצאה 17

  • פולינום טיילור.
  • שארית לגראנז' בפולינום טיילור.

הרצאה 18

  • אינטגרל - מסויים ולא מסוים.
  • הצגת נוסחאת ניוטון לייבניץ - הוכחה עם הערך הממוצע האינטגרלי.

הרצאה 19

  • אינטגרציה בחלקים.
  • שיטת ההצבה.

הרצאה 20

  • אינטגרל על פונקציה רציונאלית.

הרצאה 21

  • סכומי רימן.
  • אורך עקומה, נפח גוף סיבוב.

הרצאה 22

  • אינטגרלים לא אמיתיים.
  • מבחני התכנסות.