83-112 חדו"א 1 להנדסה/נושאי הקורס

מתוך Math-Wiki
גרסה מ־16:29, 12 בדצמבר 2024 מאת ארז שיינר (שיחה | תרומות) (←‏מבחנים מהעבר)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

מבחנים מהעבר

בחנים

קבצי PDF של שיעורי הבית שנמצאים במודל (לשעבר XI)

שימו לב שבתרגלי ה XI יש חלקים שמוגרלים רנדומית ולכן קבצי ה PDF לא יראו אחד לאחד כמו התרגילים ב XI (התבנית תהיה זהה, המספרים לא בהכרח)


נושאי ההרצאות

פלייליסט של ההרצאות תשפ"א


הרצאות 1-2 חסמים

פרק 1 בקישור הבא (https://calc1.math-wiki.com)


הרצאות 3-7 סדרות

פרק 2 בקישור הבא (https://calc1.math-wiki.com), הטיפול בתתי סדרות יהיה חלקי יותר בקורס הזה.

  • הרצאה 3 - הגדרת הגבול במובן הצר והרחב
  • הרצאה 4 - תכונות של הגדרת הגבול ומבוא לחשבון גבולות
  • הרצאה 5 - כלים לחישוב גבולות
  • הרצאה 6 - חשבון גבולות מורחב
  • הרצאה 7 - סדרות מונוטוניות והמספר e

הרצאות 8-10 פונקציות

פרק 4 בקישור הבא (https://calc1.math-wiki.com)

  • הרצאה 8 - הגדרות הגבול של פונקציה לפי קושי ולפי היינה
  • הרצאה 9 - הפונקציות הטריגונומטריות
  • הרצאה 10 - רציפות, אי רציפות, גבול של הרכבה

הרצאות 11-13 גזירות

פרק 5 בקישור הבא (https://calc1.math-wiki.com)

  • הרצאה 11 - הגדרת הנגזרת ונגזרת של פונקציות אלמנטריות
  • הרצאה 12 - נוסחאות הגזירה
  • הרצאה 13 - נגזרת ההופכית


הרצאות 14-17 חקירה

פרק 6 בקישור הבא (https://calc1.math-wiki.com)

  • הרצאה 14 - משפט ערך הביניים
  • הרצאה 15 - ויירשטראס, פרמה, רול, לגראנז', קושי
  • הרצאה 16 - הוכחת משפט קושי, קשר בין הנגזרת למונוטוניות
  • הרצאה 17 - כלל לופיטל

הרצאה 18 פולינום טיילור

פרק 6 בקישור הבא (https://calc2.math-wiki.com)

  • פולינום טיילור ושארית לגראנז' בלבד

הרצאה 19 הקדמה לאינטגרלים

פרק 3 בקישור הבא (https://calc2.math-wiki.com)

  • אינטגרל מסוים ולא מסויים, המשפט היסודי של החדו"א

הרצאות 20-21 שיטות אינטגרציה

פרק 1 בקישור הבא (https://calc2.math-wiki.com)

הרצאה 22 סכומי רימן

פרק 2 בקישור הבא (https://calc2.math-wiki.com)

  • עבור פונקציה רציפה סכומי הרימן מתכנסים לאינטגרל המסויים
  • אורך עקומה, נפח גוף סיבוב

הרצאות 23-24 אינטגרל לא אמיתי

פרק 4 בקישור הבא (https://calc2.math-wiki.com)

  • הגדרה ומבחני השוואה לאינטגרלים לא אמיתיים